

Programmable Controller

MELSEGQ_{series} MELSEGL_{series}

MELSEC-Q/L/QnA Programming Manual (PID Control Instructions)

SAFETY PRECAUTIONS

(Read these precautions before using this product.)

Before using this product, please read this manual and the relevant manuals carefully and pay full attention to safety to handle the product correctly.

The precautions given in this manual are concerned with this product only. For the safety precautions of the programmable controller system, refer to the user's manual for the CPU module used.

In this manual, the safety precautions are classified into two levels: " MARNING" and " CAUTION".

Indicates that incorrect handling may cause hazardous conditions, resulting in death or severe injury.
Indicates that incorrect handling may cause hazardous conditions, resulting in minor or moderate injury or property damage.

Under some circumstances, failure to observe the precautions given under " CAUTION" may lead to serious consequences.

Observe the precautions of both levels because they are important for personal and system safety. Make sure that the end users read this manual and then keep the manual in a safe place for future reference.

[Design Precautions]

WARNING

- Configure safety circuits external to the programmable controller to ensure that the entire system operates safely even when a fault occurs in the external power supply or the programmable controller.
 Failure to do so may result in an accident due to an incorrect output or malfunction.
 - (1) Emergency stop circuits, protection circuits, and protective interlock circuits for conflicting operations (such as forward/reverse rotations or upper/lower limit positioning) must be configured external to the programmable controller.
 - (2) When the programmable controller detects an abnormal condition, it stops the operation and all outputs are:
 - Turned off if the overcurrent or overvoltage protection of the power supply module is activated.
 - Held or turned off according to the parameter setting if the self-diagnostic function of the CPU module detects an error such as a watchdog timer error.
 - (3) All outputs may be turned on if an error occurs in a part, such as an I/O control part, where the CPU module cannot detect any error. To ensure safety operation in such a case, provide a safety mechanism or a fail-safe circuit external to the programmable controller. For a fail-safe circuit example, refer to "General Safety Requirements" in the MELSEC-L CPU Module User's Manual (Hardware Design, Maintenance and Inspection).
- Configure a circuit so that the programmable controller is turned on first and then the external power supply. If the external power supply is turned on first, an accident may occur due to an incorrect output or malfunction.

[Design Precautions]

When connecting a peripheral with the CPU module or connecting an external device, such as a personal computer, with an intelligent function module to modify data of a running programmable controller, configure an interlock circuit in the program to ensure that the entire system will always operate safely. For other forms of control (such as program modification or operating status change) of a running programmable controller, read the relevant manuals carefully and ensure that the operation is safe before proceeding. Especially, when a remote programmable controller is controlled by an external device, immediate action cannot be taken if a problem occurs in the programmable controller due to a communication failure. To prevent this, configure an interlock circuit in the program, and determine corrective actions to be taken between the external device and CPU module in case of a communication failure.

[Startup and Maintenance Precautions]

• Before performing online operations (especially, program modification, forced output, and operating status change) for the running CPU module from the peripheral connected, read relevant manuals carefully and ensure the safety. Improper operation may damage machines or cause accidents.

CONDITIONS OF USE FOR THE PRODUCT

(1) Mitsubishi programmable controller ("the PRODUCT") shall be used in conditions;

i) where any problem, fault or failure occurring in the PRODUCT, if any, shall not lead to any major or serious accident; and

ii) where the backup and fail-safe function are systematically or automatically provided outside of the PRODUCT for the case of any problem, fault or failure occurring in the PRODUCT.

(2) The PRODUCT has been designed and manufactured for the purpose of being used in general industries. MITSUBISHI SHALL HAVE NO RESPONSIBILITY OR LIABILITY (INCLUDING, BUT NOT LIMITED TO ANY AND ALL RESPONSIBILITY OR LIABILITY BASED ON CONTRACT, WARRANTY, TORT, PRODUCT LIABILITY) FOR ANY INJURY OR DEATH TO PERSONS OR LOSS OR DAMAGE TO PROPERTY CAUSED BY the PRODUCT THAT ARE OPERATED OR USED IN APPLICATION NOT INTENDED OR EXCLUDED BY INSTRUCTIONS, PRECAUTIONS, OR WARNING CONTAINED IN MITSUBISHI'S USER, INSTRUCTION AND/OR SAFETY MANUALS, TECHNICAL BULLETINS AND GUIDELINES FOR the PRODUCT.

("Prohibited Application")

Prohibited Applications include, but not limited to, the use of the PRODUCT in;

- Nuclear Power Plants and any other power plants operated by Power companies, and/or any other cases in which the public could be affected if any problem or fault occurs in the PRODUCT.
- Railway companies or Public service purposes, and/or any other cases in which establishment of a special quality assurance system is required by the Purchaser or End User.
- Aircraft or Aerospace, Medical applications, Train equipment, transport equipment such as Elevator and Escalator, Incineration and Fuel devices, Vehicles, Manned transportation, Equipment for Recreation and Amusement, and Safety devices, handling of Nuclear or Hazardous Materials or Chemicals, Mining and Drilling, and/or other applications where there is a significant risk of injury to the public or property.

Notwithstanding the above, restrictions Mitsubishi may in its sole discretion, authorize use of the PRODUCT in one or more of the Prohibited Applications, provided that the usage of the PRODUCT is limited only for the specific applications agreed to by Mitsubishi and provided further that no special quality assurance or fail-safe, redundant or other safety features which exceed the general specifications of the PRODUCTs are required. For details, please contact the Mitsubishi representative in your region.

CONTENTS

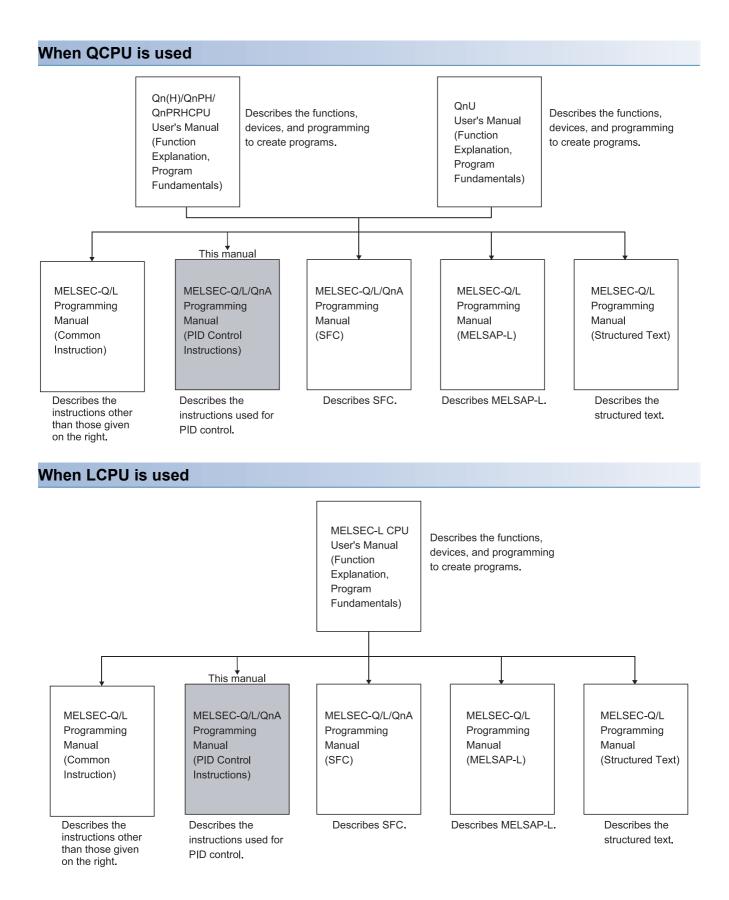
SAFE	ETY PRECA	UTIONS	1
CON	DITIONS O	F USE FOR THE PRODUCT	
MAN	UALS		6
RELE	EVANT MAN	IUALS	6
GEN	ERIC TERM	IS	
СНА	APTER 1	GENERAL DESCRIPTION	10
1.1	PID Proce	essing Method	
СНА	APTER 2	SYSTEM CONFIGURATION FOR PID CONTROL	12
2.1	Applicabl	e CPU	13
СНИ	APTER 3	PID CONTROL SPECIFICATIONS	14
0	-		
3.1		ol by incomplete derivative	
		ice specifications	
		blinstruction list	
3.2		ol by Complete Derivative	
J.Z			
		tion block diagram and operation expressions	
	-		
СНА	APTER 4	FUNCTIONS OF PID CONTROL	25
4.1	Outline of	f PID Control	
4.2		s of PID Control	
	•	method	
	Forward o	peration and reverse operation	
	Proportion	al operation (P operation)	
	Integral op	peration (I operation)	
		operation (D operation).	
	PID opera	tion	
4.3	•••••	nctions	31
		changeover function	
		lower limit control function.	
		or transfer to the SV storage device for the PV in manual mode	
	Changing	the PID control data or input/output data setting range (for QCPU and LCPU)	
СНА	APTER 5	PID CONTROL PROCEDURE	34
5.1	PID Conti	ol Data	
	Number o	f loops to be used and the number of loops to be executed in a single scan $\ldots \ldots \ldots$	
	Sampling	cycle	50
5.2	I/O Data.		51
СНА	APTER 6	PID CONTROL INSTRUCTIONS	56
СНА	APTER 7	HOW TO READ EXPLANATIONS FOR INSTRUCTIONS	58

CHAPTER 8 INCOMPLETE DERIVATIVE PID CONTROL INSTRUCTIONS AND **PROGRAM EXAMPLES**

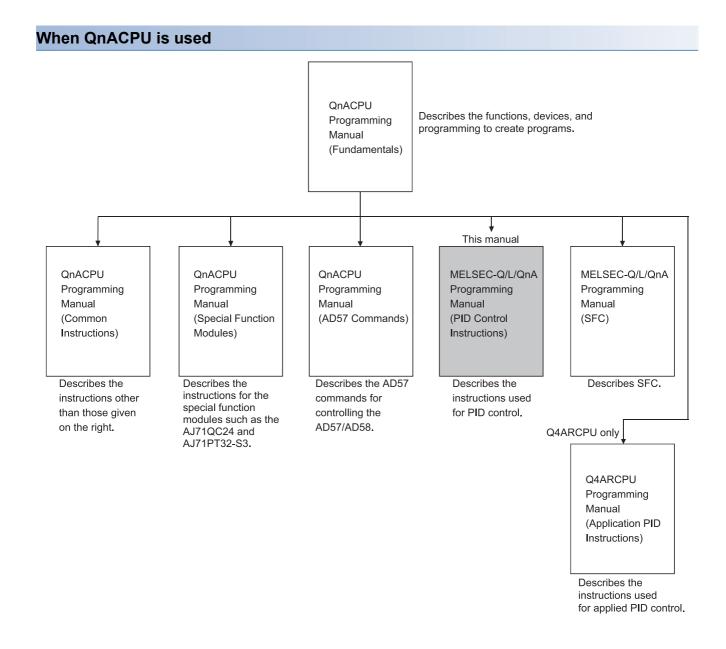
	PROGRAM EXAMPLES	60
8.1	PID Control Instructions	60
	PID control data settings	60
	PID operation.	61
	Operation stop/start of designated loop no	63
	Parameter change at designated loop	64
8.2	PID Control Program Examples	66
	System configuration for program examples	
	Program example for automatic mode PID control	
	Program example for changing the PID control mode between automatic and manual	69
сц	APTER 9 COMPLETE DERIVATIVE PID CONTROL INSTRUCTIONS A	
	PROGRAM EXAMPLES	72
9.1	PID Control Instructions	
	PID control data settings	
	PID control.	
	Monitoring PID control status (QnACPU only).	
	Operation stop/start of designated loop no	
	Parameter change at designated loop	
9.2	PID Control Program Examples (for QCPU and LCPU)	
	System configuration for program examples	
	Program example for automatic mode PID control	
	Program example for changing the PID control mode between automatic and manual	
9.3	PID Control Program Examples (QnACPU only)	
	System configuration for program examples	
	Program example for automatic mode PID control	
	Program example for changing the PID control mode between automatic and manual	92
APF	PENDICES	96
Арре	endix 1 Processing Time List	
Арре	endix 2 Anti-Reset Windup Measure	
IND	EX	101

INSTRUCTION INDEX	103
REVISIONS	105
WARRANTY	106

MANUALS


The manuals related to this product are listed below.

In necessary, order them by quoting the details in the tables below.


RELEVANT MANUALS

Manual name	Manual number (Model Code)
QnUCPU User's Manual (Function Explanation, Program Fundamentals)	SH-080807ENG
Describes the functions, programming procedures, devices, etc. necessary to create programs. (Sold separately)	(13JZ27)
Qn(H)/QnPH/QnPRHCPU Users Manual(Function Explanation, Program Fundamentals)	SH-080808ENG
Describes the functions, programming procedures, devices, etc. necessary to create programs. (Sold separately)	(13JZ28)
ELSEC-L CPU Module User's Manual (Function Explanation, Program Fundamentals) escribes the functions, programming procedures, devices, etc. necessary to create programs.	SH-080889ENG (13JZ35)
nACPU Programming Manual (Fundamentals)	IB-66614
escribes how to create programs, the names of devices, parameters, and types of program. (Sold separately)	(13JF46)
ELSEC-Q/L Programming Manual (Common Instructions)	SH-080809ENG
escribes how to use sequence instructions, basic instructions, and application instructions. (Sold separately)	(13JW10)
nACPU Programming Manual (Common Instructions)	SH-080810ENG
escribes how to use sequence instructions, basic instructions, and application instructions. (Sold separately)	(13JW11)
nACPU Programming Manual (Special Function) escribes the dedicated instructions for special function modules available when using the Q2ACPU(S1), Q3ACPU, and 4ACPU. (Sold separately)	SH-4013 (13JF56)
nACPU Programming Manual (AD57 Instructions) escribes the dedicated instructions for controlling an AD57(S1) type CRT controller module available when using the 2ACPU(S1), Q3ACPU, or Q4ACPU. (Sold separately)	IB-66617 (13JF49)
ELSEC-Q/L/QnA Programming Manual (SFC) escribes the system configuration, performance specifications, functions, programming, debugging, and error codes for SFC IELSAP3) programs. (Sold separately)	SH-080041 (13JF60)
ELSEC-Q/L Programming Manual (MELSAP-L)	SH-080076
escribes programming methods, specifications, and functions for SFC (MELSAP-L) programs. (Sold separately)	(13JF61)
ELSEC-Q Programming/Structured Programming Manual (Process Control Instructions)	SH-080316E
escribes the dedicated instructions for process control. (Sold separately)	(13JF67)
IELSEC-Q/L Programming Manual (Structured Text)	SH-080366E
escribes programming using the structured text language. (Sold separately)	(13JF68)

Before reading this manual, refer to the user's manual of the used CPU module or the QnACPU Programming Manual (Fundamentals), and confirm which programs, I/O processing, and devices can be used with the used CPU module.

GENERIC TERMS

Generic term	Description		
CPU module	A generic term for the Basic model QCPU, High Performance model QCPU, Redundant CPU, Universal model QCPU, LCPU, and QnACPU		
QCPU	A generic term for the Q00CPU, Q01CPU, Q02CPU, Q02HCPU, Q06HCPU, Q12HCPU, Q25HCPU, Q12PRHCPU, Q25PRHCPU, Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU, Q03UDCPU, Q03UDCCPU, Q03UDECPU, Q04UDHCPU, Q04UDVCPU, Q04UDPVCPU, Q04UDHCPU, Q06UDHCPU, Q06UDVCPU, Q06UDPVCPU, Q06UDHCPU, Q10UDHCPU, Q10UDHCPU, Q13UDHCPU, Q13UDVCPU, Q13UDPVCPU, Q13UDEHCPU, Q20UDHCPU, Q20UDHCPU, Q26UDHCPU, Q26UDVCPU, Q26UDPVCPU, Q26UDEHCPU, Q50UDEHCPU, Q100UDEHCPU		
QnCPU	A generic term for the Q02CPU		
QnHCPU	A generic term for the Q02HCPU, Q06HCPU, Q12HCPU, Q25HCPU		
QnPHCPU	A generic term for the Q02PHCPU, Q06PHCPU, Q12PHCPU, Q25PHCPU		
QnPRHCPU	A generic term for the Q12PRHCPU, Q25PRHCPU		
LCPU A generic term for the L02SCPU, L02SCPU-P, L02CPU, L02CPU-P, L06CPU, L06CPU-P, L26CPU, L26 BT, L26CPU-PBT			
QnACPU	A generic term for the Q2ASCPU, Q2ASCPU-S1, Q2ASHCPU, Q2ASHCPU-S1, Q2ACPU, Q2ACPU-S1, Q3ACPU, Q4ACPU, Q4ARCPU		
QnA	A generic term for the Q2ASCPU, Q2ASCPU-S1, Q2ASHCPU, Q2ASHCPU-S1, Q2ACPU, Q2ACPU-S1, Q3ACPU, Q4ACPU		
Q4AR	A generic term for the Q4ARCPU		
Basic model QCPU	A generic term for the Q00JCPU, Q00CPU, Q01CPU		
Basic			
High Performance model QCPU	A generic term for the Q02CPU, Q02HCPU, Q06HCPU, Q12HCPU, Q25HCPU		
High Performance			
Process CPU	A generic term for the Q02PHCPU, Q06PHCPU, Q12PHCPU, Q25PHCPU		
Redundant CPU	A generic term for the Q12PRHCPU, Q25PRHCPU		
Universal model QCPU	A generic term for the Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU, Q03UDCPU, Q03UDVCPU, Q03UDECPU,		
Universal	Q04UDHCPU, Q04UDVCPU, Q04UDPVCPU, Q04UDEHCPU. Q06UDHCPU, Q06UDVCPU, Q06UDPVCPU, Q06UDEHCPU, Q10UDHCPU, Q10UDEHCPU, Q13UDHCPU, Q13UDVCPU, Q13UDPVCPU, Q13UDEHCPU, Q20UDHCPU, Q20UDEHCPU, Q26UDHCPU, Q26UDVCPU, Q26UDPVCPU, Q26UDEHCPU, Q50UDEHCPU, Q100UDEHCPU		
Universal model Process CPU	A generic term for the Q04UDPVCPU, Q06UDPVCPU, Q13UDPVCPU, Q26UDPVCPU		

This manual uses the following generic terms unless otherwise described.

1 GENERAL DESCRIPTION

This manual describes the sequence program instructions used to implement PID control with any of the following CPU modules.

- · Basic model QCPU (first five digits of serial No. are 04122 or later)
- High Performance model QCPU
- Redundant CPU
- Universal model QCPU
- LCPU
- QnACPU

For the Basic model QCPU, High Performance model QCPU, Redundant CPU, Universal model QCPU, and LCPU, the instructions for PID control by using complete and incomplete derivatives are featured as standard.

The QnACPU has the instructions used to perform PID control by complete derivative (PID control instructions) as standard features.

Since the incomplete derivative PID control instructions and complete derivative PID control instructions are independent of each other, they can be executed at the same time.

The following table indicates the CPU modules that can use the incomplete derivative PID control instructions and complete derivative PID control instructions.

O: Usable, X: Unusable

CPU Module Model Name		Incomplete Derivative	Complete Derivative
Basic model QCPU First five digits of serial No. are "04121" or earlier		×	×
	First five digits of serial No. are "04122" or later	0	O ^{*1}
High Performance model QCPU	First five digits of serial No. are "05031" or earlier	×	0
	First five digits of serial No. are "05032" or later	0	0
Redundant CPU		0	0
Universal model QCPU		0	0
LCPU		0	0
QnACPU		×	0

*1 Version 7 or earlier version of GX Developer issues an "instruction code alarm" if it loads a new CPU instruction realized with GX Developer Version 8.

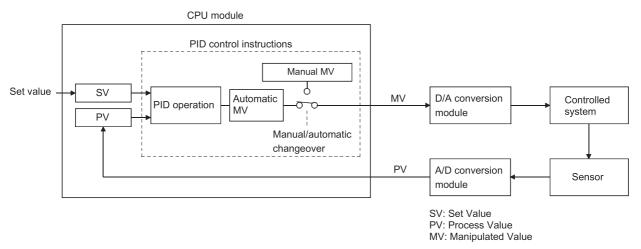
There are the following PID control instructions.

Classification	Incomplete Derivative	Complete Derivative
PID control data setting	S(P).PIDINIT	PIDINIT(P)
PID operation	S(P).PIDCONT	PIDCONT(P)
PID control status monitor	-	PID57(P)
Specified loop No. operation stop	S(P).PIDSTOP	PIDSTOP(P)
Specified loop No. operation start	S(P).PIDRUN	PIDRUN(P)
Specified loop No. parameter change	S(P).PIDPRMW	PIDPRMW(P)

PID control via PID control instructions is implemented by combining the CPU module with the A/D converter module and D/A converter module.

In the case of the QnACPU, the PID control status can be monitored using the AD57(S1) CRT controller module.

Point P

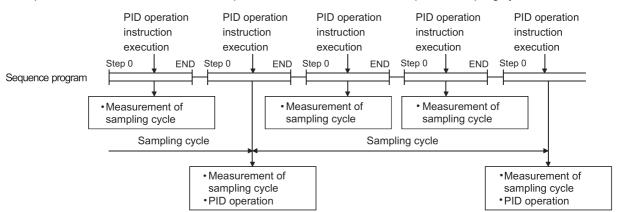

- The Process CPU is not compatible with the PID control instructions described in this manual. To implement PID control using the Process CPU, use the process control instructions described in the MELSEC-Q Programming/Structured Programming Manual (Process Control Instructions).
- The Redundant CPU and Universal model Process CPU can use the PID control instructions and process control instructions.

1.1 PID Processing Method

This section describes the processing method for PID control using PID control instructions. (SP Page 25 FUNCTIONS OF PID CONTROL)

Overview of PID Control Processing

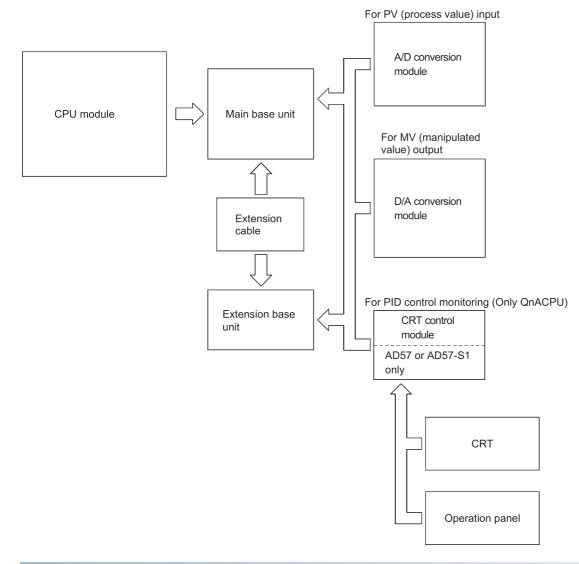
Execute PID control with PID control instructions by loading an A/D converter module and a D/A converter module, as shown below.



In the PID control processing method, as shown above, the PID operation is executed using the set value (SV) and the process value (PV) read from the A/D converter module, and the manipulated value (MV) is then calculated. The calculated MV (manipulated value) is output to the D/A converter module.

Operation when PID Operation Instruction Executed

When a PID operation instruction^{*1} is executed in a sequence program, the sampling cycle is measured and a PID operation is performed.


PID operation in accordance with the PID operation instruction is executed in preset sampling cycles.

*1 There are the following PID operation instructions. S.PIDCONT (incomplete derivative) PIDCONT (complete derivative)

2 SYSTEM CONFIGURATION FOR PID CONTROL

This chapter describes the system configuration for PID control using the PID control instructions.

Settings of SV, PV, and MV used in the PID control instructions

Set a value within the following range.

• With PID limits (0 to 2000)

• Without PID limits (-32768 to 32767)

CPU Module Type	SV, PV, MV		
	With PID limits ^{*1}	Without PID limits	
Basic model QCPU	0	0	
High Performance model QCPU	0	0	
Redundant CPU	0	0	
Universal model QCPU	0	0	
LCPU	0	0	
QnACPU	0	×	

*1 When the resolution of the A/D converter module or D/A converter module used for I/O of PID control is other than 0 to 2000, convert the digital values into 0 to 2000.

2.1 Applicable CPU

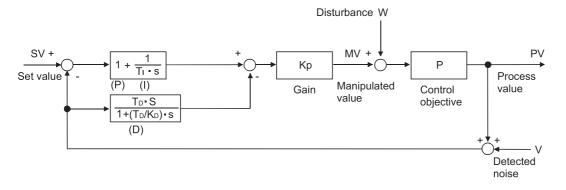
Component	Module		
Basic model QCPU	Q00JCPU, Q00CPU, Q01CPU (First 5 digits of serial No. are 04122 or later)		
High Performance model QCPU	Q02CPU, Q02HCPU, Q06HCPU, Q12HCPU, Q25HCPU		
Redundant CPU	Q12PRHCPU, Q25PRHCPU		
Universal model QCPU	Q00UJCPU, Q00UCPU, Q01UCPU, Q02UCPU, Q03UDCPU, Q03UDVCPU, Q03UDECPU, Q04UDHCPU, Q04UDHCPU, Q04UDVCPU, Q04UDPVCPU, Q04UDEHCPU, Q06UDHCPU, Q06UDVCPU, Q06UDPVCPU, Q06UDEHCPU, Q10UDHCPU, Q10UDEHCPU, Q13UDHCPU, Q13UDVCPU, Q13UDPVCPU, Q13UDEHCPU, Q20UDHCPU, Q20UDEHCPU, Q26UDHCPU, Q26UDVCPU, Q26UDPVCPU, Q26UDEHCPU, Q50UDEHCPU, Q100UDEHCPU		
LCPU	L02SCPU, L02SCPU-P, L02CPU, L02CPU-P, L06CPU, L06CPU-P, L26CPU, L26CPU-P, L26CPU-BT, L26CPU-PBT		
QnACPU	Q2ASCPU, Q2ASCPU-S1, Q2ASHCPU, Q2ASHCPU-S1, Q2ACPU, Q3ACPU, Q4ACPU, Q4ARCPU		

3 PID CONTROL SPECIFICATIONS

This section gives the specifications PID operation using PID control instructions.

3.1 PID Control by incomplete derivative

Performance specifications


The performance specifications for PID control are tabled below.

-: Unusable

Item			Specifications				
		With PID limits		Without PID limits		QnACPU	
			Basic model QCPU	High Performance model QCPU, Redundant CPU, Universal model QCPU, LCPU	Basic model QCPU	High Performance model QCPU, Redundant CPU, Universal model QCPU, LCPU	-
Number of P	ID control loops	—	8 loops (maximum)	32 loops (maximum)	8 loops (maximum)	32 loops (maximum)	—
Sampling cyo	cle	Τ _S	0.01 to 60.00s	0.01 to 60.00s			
PID operatio	n method	-	Process value differentiation incomplete derivative (forward operation/reverse operation)				—
PID constant	Proportional constant	К _Р	0.01 to 100.00				—
setting range	Integral constant	Τ _Ι	0.1 to 3000.0s				
	Derivative constant	T _D	0.00 to 300.00s			—	
Derivative gain K _D		0.00 to 300.00				—	
SV (set value) setting range SV		0 to 2000 -32768 to 32767		—			
PV (process value) setting range		PV	-50 to 2050		-32768 to 32767		—
MV (manipulated value) output MV range							

PID operation block diagram

The PID operation block diagram for incomplete derivative is shown below.

Operation expressions

The operation expressions for PID control using PID control instructions are indicated below.

Name		Operation Expressions	Meanings of Symbols	
Process value differentiation Incomplete derivative	Forward operation	$\begin{split} & EV_n = PV_{fn}^{*1} - SV \\ & \Delta MV = K_p\{(EV_n - EV_{n-1}) + \frac{T_s}{T_1} EV_n + D_n\} \\ & D_n = \frac{T_D}{T_S + \frac{T_D}{K_D}} \left(PV_{fn} - 2PV_{fn-1} + PV_{fn-2}\right) + \frac{T_D}{T_S + \frac{T_D}{K_D}} D_{n-1} \\ & MV_n = \Sigma \Delta MV \end{split}$	EV_{n} : Deviation in the present sampling cycle EV_{n-1} : Deviation in the preceding sampling cycle SV: Set value PV_{fn} : Process value of the present sampling cycle (after filtering) PV_{fn-1} : Process value of the preceding sampling cycle (after filtering) PV_{fn-2} : Process value of the sampling cycle two cycles	
	$ \begin{array}{c} \text{Reverse} \\ \text{operation} \end{array} \hspace{0.5cm} \begin{array}{c} \text{EV}_n = \text{SV} - \text{PV}_{\text{fn}}^{*1} \\ \Delta \text{MV} = \text{K}_{\text{P}}((\text{EV}_n - \text{EV}_{n-1}) + \frac{\text{T}_{\text{S}}}{\text{T}_{\text{I}}} \text{EV}_n + \text{D}_n) \\ D_n = \frac{\text{T}_{\text{D}}}{\text{T}_{\text{S}} + \frac{\text{T}_{\text{D}}}{\text{K}_{\text{D}}}} \left(- \text{PV}_{\text{fn}} + 2\text{PV}_{\text{fn}-1} - \text{PV}_{\text{fn}-2} \right) + \frac{\text{T}_{\text{D}}}{\text{T}_{\text{S}} + \frac{\text{T}_{\text{D}}}{\text{K}_{\text{D}}}} \text{D}_{n-1} \\ D_{n-1} \\ \text{MV}_n = \Sigma \Delta \text{MV} \end{array} \hspace{0.5cm} \begin{array}{c} \text{N} \\ \text{T}_{\text{S}} \\ \text{T}_{\text{S}} \\ \text{T}_{\text{S}} \\ \text{T}_{\text{D}} \end{array} \end{array} $	$\begin{array}{l} F_{fn,2}, \mbox{ Process value of the sampling cycle two cycles} \\ \mbox{ before (after filtering)} \\ \Delta MV: Output change value \\ MV_n: Present manipulation value \\ D_n: Present derivative term \\ D_{n-1}: Derivative term of the preceding sampling cycle \\ K_p: Proportional constant \\ T_S: Sampling cycle \\ T_i: Integral constant \\ T_D: Derivative constant \\ K_D: Derivative gain \\ \end{array}$		

*1 PV_{fn} is calculated using the following expression.

Therefore, it is the same as the PV (process value) of the input data as long as the filter coefficient is not set for the input data. Process Value after Filtering $PV_{fn} = PV_n + \alpha(PV_{fn-1} - PV_n)$

 $\mathsf{PV}_{\mathsf{n}}\!\!:\!\mathsf{Process}$ value of the present sampling cycle

 α : Filter coefficient

PV_{fn-1}: Process value of the preceding sampling cycle (after filtering)

 PV_{fn} is stored in the I/O data area. (\bowtie Page 51 I/O Data)

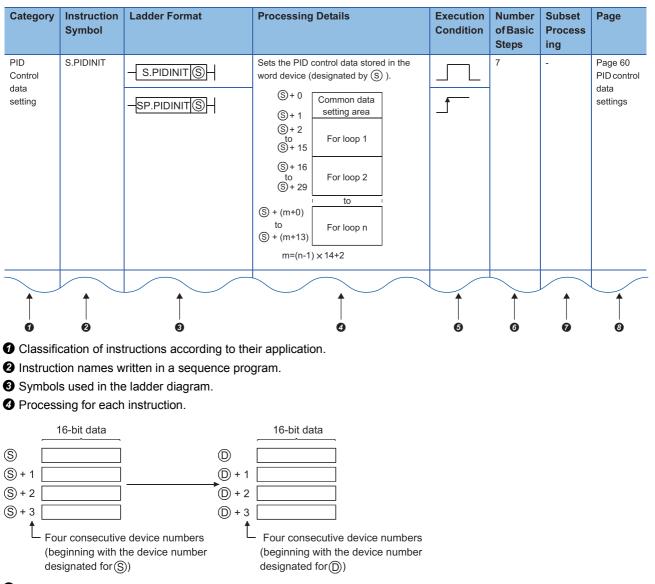
PID control instruction list

A list of the instructions used to execute PID control is given below.

\bigcirc : Usable, \times : Unusable

Instruction Name	Processing Details CPU			
		QCPU, LCPU	QnACPU	
S.PIDINIT	Sets the reference data for PID operation.	O*1	×	
S.PIDCONT	Executes PID operation with the SV (set value) and the PV (process value).	O*1	×	
S.PIDSTOP S.PIDRUN	Stops or starts PID operation for the set loop No.	0	×	
S.PIDPRMW	Changes the operation parameters for the designated loop number to PID control data.	O ^{*1}	×	

*1 For the Basic model QCPU, High Performance model QCPU, Redundant CPU, Universal model QCPU, and LCPU, "with or without PID limits" can be selected.


Refer to Sections 5.1 and 5.2 for details of the setting range when "with/without PID limits" has been selected.

 $\ensuremath{\boxtimes}$ Page 36 PID Control Data, $\ensuremath{\boxtimes}$ Page 51 I/O Data

PID control instruction list

The PID control instruction list has the format indicated below:

How to Read the PID control Instruction List

6 Details of execution condition for each instruction are given below.

Symbol	Execution Condition
	Indicates an instruction that is executed for the duration that the condition for its execution is ON. When the condition before the instruction is OFF, the instruction is not executed and no processing is carried out.
	Indicates an instruction that is executed once only at the leading edge (OFF to ON) of the condition for its execution; thereafter the instruction will not be executed, and no processing will be carried out, even if the condition is ON.

O Number of instruction steps

For details on the number of steps, refer to the Programming Manual (Common Instructions) for the CPU module used.

• A circle indicates that subset processing is possible.

- indicates that subset processing is impossible.

For details on subset processing, refer to the Programming Manual (Common Instructions) for the CPU module used.

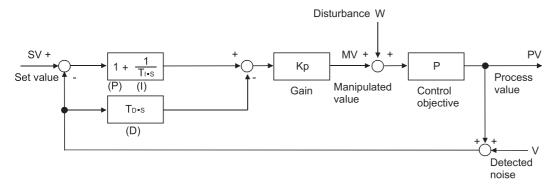
3 Indicates the page number in this manual where a detailed description for the instruction can be found.

■PID Control Instruction List

Category	Instruction Symbol	Ladder Format	Processing Details	Execution Condition	Number of Basic Steps	Subset Process ing	Page
PID Control data setting	S.PIDINIT	- <u>S.PIDINIT</u> SH	Sets the PID control data stored in the word device (designated by (S)). (S) + 0 (S) + 1 (S) + 2 to (S) + 15 (S) + 15 (S) + 16 (S) + 16 (S) + 29 For loop 1 (S) + 16 (S) + 29 For loop 2 (S) + (m+0) to (S) + (m+13) $m=(n-1) \times 14+2$		7	-	Page 60 PID control data settings
PID operation	S.PIDCONT	SP.PIDCONTS-	Executes PID operation with the SV (set value) and the PV (process value) designated by (\$) and stores the PID operation results in the MV (manipulated value) area of the word device designated by (\$). (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$)		7	-	Page 61 PID operation
Operation stop	S.PIDSTOP	-SP.PIDSTOP	Stops the PID operation at the loop number designated by (n).		7	-	Page 63 Operation stop/start of designated loop no.
Operation start	S.PIDRUN	-S.PIDRUN	Starts the operation at the loop number designated by \bigcirc .		6	-	Page 63 Operation stop/start of designated loop no.
Parameter change	S.PIDPRMW	- S.PIDPRMW (D)(S)-	Changes the operation parameter for the loop number designated by n to the PID control data stored in the word device designated by S		8	-	Page 64 Parameter change at designated loop

- "PID operation by incomplete derivative" and "PID operation by complete derivative" can be executed simultaneously since they are independent.
- When the S(P).PIDINIT instruction has been used to make initialization, use the S(P).PIDCONT instruction to perform PID operation. To stop and start the PID operation of the specified loop No. and to change the PID control data, use the S(P).PIDSTOP, S(P).PIDRUN and S(P).PIDPRMW instructions accordingly.

Performance specifications


The performance specifications for PID control are tabled below.

Item			Specification	Specification					
			With PID limits		Without PID limits		QnACPU		
			Basic model QCPU	High Performance model QCPU, Redundant CPU, Universal model QCPU, LCPU	Basic model QCPU	High Performance model QCPU, Redundant CPU, Universal model QCPU, LCPU			
Number of PID	control loops	—	8 loops (maximum)	32 loops (maximum)	8 loops (maximum)	32 loops (maximum)	32 loops (maximum)		
Sampling cycle	9	Τ _S	0.01 to 60.00s	0.01 to 60.00s					
PID operation	method	—	Process value differentiation complete derivative (forward operation/reverse operation)						
PID constant setting range	Proportional constant	K _P	0.01 to 100.00						
	Integral constant	Τ _Ι	0.1 to 3000.0s						
	Derivative constant	Т _D	0.00 to 300.00s						
SV (set value) setting range		SV	0 to 2000		-32768 to 32767 0 to 2		0 to 2000		
PV (process value) setting range		PV	-50 to 2050		-32768 to 32767		-50 to 2050		
MV (manipulated value) output range		MV]						

PID operation block diagram and operation expressions

PID operation block diagram

The PID operation block diagram for complete derivative is shown below.

Operation expressions

Name		Operation Expressions	Meanings of Symbols
Process value differentiation Complete derivative	Forward operation Reverse operation	$\begin{split} & EV_n = PV_{fn}^{*1} - SV \\ & \Delta MV = K_p\{(EV_n - EV_{n-1}) + \frac{T_s}{T_1} EV_n + D_n\} \\ & D_n = \frac{T_D}{T_s} \cdot (PV_{fn} - 2PV_{fn-1} + PV_{fn-2}) \\ & MV_n = \Sigma \Delta MV \\ & EV_n = SV - PV_{fn}^{*1} \\ & \Delta MV = K_p\{(EV_n - EV_{n-1}) + \frac{T_s}{T_1} EV_n + D_n\} \\ & D_n = \frac{T_D}{T_s}(-PV_{fn} + 2PV_{fn-1} - PV_{fn-2}) \\ & MV_n = \Sigma \Delta MV \end{split}$	$ \begin{array}{l} EV_n: Deviation in the present sampling cycle \\ EV_{n-1}: Deviation in the preceding sampling cycle \\ SV: Set value \\ PV_{fn}: Process value of the present sampling cycle (after filtering) \\ PV_{fn-1}: Process value of the preceding sampling cycle (after filtering) \\ PV_{fn-2}: Process value of the sampling cycle two cycles before (after filtering) \\ \Delta MV: Output change value \\ MV_n: Present manipulation value \\ D_n: Present derivative term \\ K_p: Proportional constant \\ T_S: Sampling cycle \\ T_i: Integral constant \\ T_D: Derivative constant \\ \end{array} $

The operation expressions for PID operation using PID control instructions are indicated below.

*1 PV_{fn} is calculated using the following expression.

Therefore, it is the same as the PV (process value) of the input data as long as the filter coefficient is not set for the input data. Process Value after Filtering $PV_{fn} = PV_n + \alpha(PV_{fn-1} - PV_n)$

PV_n: Process value of the present sampling cycle

 α : Filter coefficient

PV_{fn-1}: Process value of the preceding sampling cycle (after filtering)

PV_{fn} is stored in the I/O data area. (SP Page 51 I/O Data)

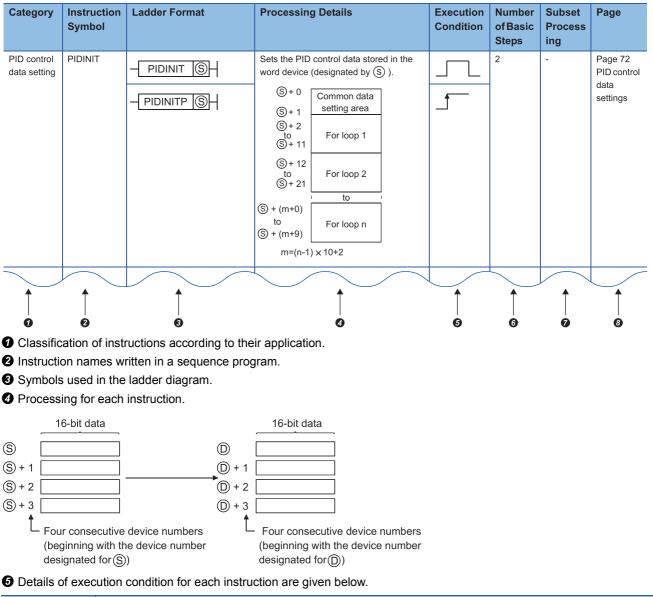
PID control instruction list

A list of the instructions used to execute PID control is given below.

\bigcirc : Usable, \times : Unusable

Instruction	Processing Details	СРИ		
Name	Name		QnACPU	
PIDINIT	Sets the reference data for PID operation.	O ^{*1}	0	
PIDCONT	Executes PID operation with the SV (set value) and the PV (process value).	O ^{*1}	0	
PID57	Used to monitor the results of PID operation at an AD57(S1).	×	0	
PIDSTOP PIDRUN	Stops or starts PID operation for the set loop No.	0	0	
PIDPRMW	Changes the operation parameters for the designated loop number to PID control data.	O ^{*1}	0	

*1 For the Basic model QCPU, High Performance model QCPU, Redundant CPU, Universal model QCPU, and LCPU, "with or without PID limits" can be selected.


Refer to Sections 5.1 and 5.2 for details of the setting range when "with/without PID limits" has been selected.

 \boxtimes Page 36 PID Control Data, \boxtimes Page 51 I/O Data

The PID control instruction list

The PID control instruction list has the format indicated below:

How to Read the PID control Instruction List

Symbol Execution Condition	
	Indicates an instruction that is executed for the duration that the condition for its execution is ON. When the condition before the instruction is OFF, the instruction is not executed and no processing is carried out.
	Indicates an instruction that is executed once only at the leading edge (OFF to ON) of the condition for its execution; thereafter the instruction will not be executed, and no processing will be carried out, even if the condition is ON.

6 Number of instruction steps

For details on the number of steps, refer to the QCPU (Q mode) /QnACPU Programming Manual (Common Instructions).

A circle indicates that subset processing is possible.

- indicates that subset processing is impossible.

For details on subset processing, refer to the QCPU (Q mode) /QnACPU Programming Manual (Common Instructions).

3 Indicates the page number in this manual where a detailed description for the instruction can be found.

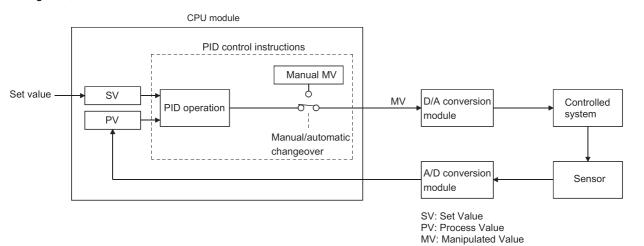
■PID Control Instruction List

Category	Instruction Symbol	Ladder Format	Processing Details	Execution Condition	Number of Basic Steps	Subset Process ing	Page
PID control data setting	PIDINIT		Sets the PID control data stored in the word device (designated by (S)).(S) + 0Common data setting area(S) + 1Setting area(S) + 2For loop 1(S) + 12For loop 2(S) + 21For loop 2(S) + (m+0)For loop n(S) + (m+9)For loop n(S) + (m+9)For loop n(S) + (m+1) × 10+2		2	-	Page 72 PID control data settings
PID operation	PIDCONT	- <u>PIDCONTS</u>	Executes PID operation with the SV (set value) and the PV (process value) designated by (\$) and stores the PID operation results in the MV (manipulated value) area of the word device designated by (\$). (\$) + 0 to (\$) + 9 (\$) + 10 to (\$) + 27 (\$) + 28 to (\$) + 27 (\$) + 28 to (\$) + 45 (\$) + 46 (\$) + 47 (\$) + 45 (\$) + 45 (\$) + 45 (\$) + 45 (\$) + 45 (\$) + 46 (\$) + 47 (\$) + 47 (\$) + 45 (\$) + 45 (\$) + 45 (\$) + 45 (\$) + 45 (\$) + 46 (\$) + 46 (\$) + 47 (\$) + 45 (\$) +		2	-	Page 74 PID control
Monitoring	PID57	- PID57 (n) (S) (S) (S) (PID57P (n) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S	Monitors the PID operation results for the AD57 (S1) (designated by (n)). (n): First I/O number of the AD57(S1) (S1): Monitor screen number 1: Loop 1 to loop 8 2: Loop 9 to loop16 3: Loop17 to loop24 4: Loop25 to loop32 (S2): Initial screen display request		4	-	Page 76 Monitoring PID control status (QnACPU only)
Operation stop	PIDSTOP		Stops the PID operation at the loop number designated by (n).		2	-	Page 78 Operation stop/start of designated loop no.
Operation start	PIDRUN		Starts the operation at the loop number designated by (n) .		2	-	Page 78 Operation stop/start of designated loop no.

Parameter change PIDPRMW PIDPRMW Changes the operation parameter for the loop number designated by (n) to the PID control data stored in the word 3 -	ing
	- Page 79 Parame
- PIDPRMWP (D) SH device designated by (S)	change designa loop

Point *P*

• "PID operation by incomplete derivative" and "PID operation by complete derivative" can be executed simultaneously since they are independent.


• When the PIDINIT(P) instruction was used to make initialization, use the PIDCONT(P) instruction to perform PID operation. To stop and start the PID operation of the specified loop No. and to change the PID control data, use the PIDSTOP(P) instruction, PIDRUN(P) instruction and PIDPRMW(P) instruction.

4 FUNCTIONS OF PID CONTROL

This chapter describes PID control performed using the PID control instructions.

4.1 Outline of PID Control

PID control is applicable to process control in which factors such as flowrate, velocity, air flow volume, temperature, tension, mixing ratio, etc. must be controlled.

During PID control, the value measured by the sensor (process value) is compared with the preset value (set value). The output value (manipulated value) is then adjusted in order to eliminate the difference between the process value and the set value.

The MV (manipulated value) is calculated by combining the proportional operation (P), the integral operation (I), and the derivative operation (D) so that the PV is brought to the same value as the SV quickly and precisely.

The MV is made large when the difference between the PV and the SV is large so as to bring the PV close to the SV quickly. As the difference between the PV and the SV gets smaller, a smaller MV is used to bring the PV to the same value as the SV gradually and accurately.

4.2 Functions of PID Control

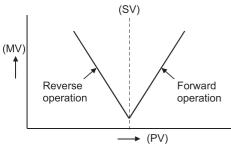
Operation method

The operation methods for PID control with the PID control instructions are the velocity type and process value derivative type. The following describes the control executed for both of these methods:

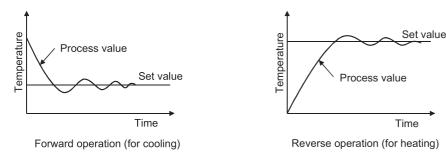
Velocity type operation

The velocity type operation calculates amounts of changes in the MVs (manipulated values) during PID operation. The actual MV is the accumulated amount of change of the MV calculated for each sampling cycle.

Process value derivative type operation


The process value derivative type operation executes PID operations by differentiating the PV (process value).

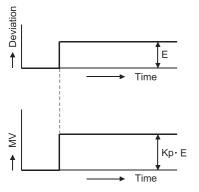
Because the deviation is not subject to differentiation, sudden changes in the output due to differentiation of the changes in the deviation generated by changing the set value can be reduced.


Forward operation and reverse operation

Either forward operation or reverse operation can be selected to designate the direction of PID control.

- In forward operation, the MV (manipulated value) increases as the PV (process value) increases beyond the SV (set value).
- In reverse operation, the MV increases as the PV decreases below the SV.
- In forward operation and reverse operation, the MV becomes larger as the difference between the SV and the PV increases.
- The figure below shows the relationships among forward operation and reverse operation and the MV, the PV, and the SV.

• The figure below shows examples of process control with forward operation and reverse operation:


Proportional operation (P operation)

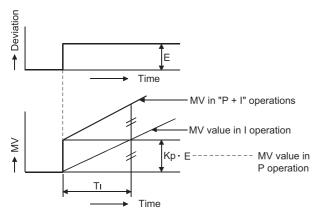
The control method for proportional operation is described below.

- In proportional operation, an MV (manipulated value) proportional to the deviation (the difference between the set value and process value) is obtained.
- The relationship between E (deviation) and the MV is expressed by the following formula: K_P is a proportional constant and is called the "proportional gain".
 - MV=K_P⋅E

Condition		Proportional Operation
When proportional gain K_P is smaller		Control operation gets slower.
When proportional gain K_P is larger		Control operation gets faster. However, hunting is more likely to occur.

• The proportional operation in step response with a constant E (deviation) is illustrated below.

• A certain error produced relative to a set value is called an offset. An offset is produced in proportional operation.


Integral operation (I operation)

The control method for integral operation is described below.

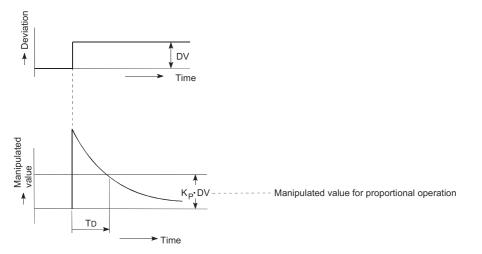
- In the integral operation, the MV (manipulated value) changes continuously to zero deviation when it occurs. This operation can eliminate the offset that is unavoidable in proportional operation.
- The time required for the MV in integral operation to reach the MV for proportional operation after the generation of deviation is called the integral time. Integral time is expressed as T₁.

Condition	Integral Operation	
When integral time T _I is shorter	Integrating effect increases and the time to eliminate the offset becomes shorter. However, hunting is more likely to occur.	
When integral time T ₁ is longer	Integrating effect decreases and the time to eliminate the offset becomes longer.	

• The integral operation in step response with a constant E (deviation) is illustrated below.

• Integral operation is always used in combination with proportional operation (PI operation) or with proportional and derivative operations (PID operation). Integral operation cannot be used independently.

Derivative operation (D operation)


The control method for derivative operation is described below.

Derivative operation

- In derivative operation, an MV (manipulated value) proportional to the deviation change rate is added to the system value to zero deviation when it occurs. This operation prevents significant fluctuation at the control objective due to external disturbances.
- The time required for the MV in the derivative operation to reach the MV for the proportional operation after the generation
 of deviation is called the derivative time. Derivative time is expressed as T_D.

Condition	Derivative Operation		
When derivative time T _D is shorter	Differentiating effect decreases.		
When derivative time T _D is longer	Differentiating effect increases. However, hunting of short cycle is more like to occur.		

• The derivative operation when the deviation is a constant value stepped response is shown below.

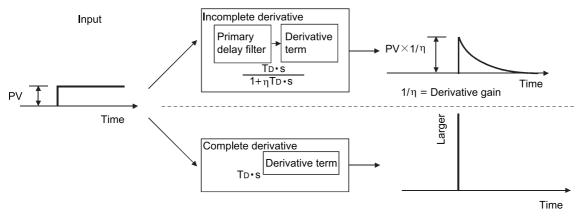
• Derivative operation is always used in combination with proportional operation (PD operation) or with proportional and integral operations (PID operation). Derivative operation cannot be used independently.

About the differences between complete derivative and incomplete derivative

■[Incomplete derivative]

Incomplete derivative is PID control that has a primary delay filter in the input of a derivative term.

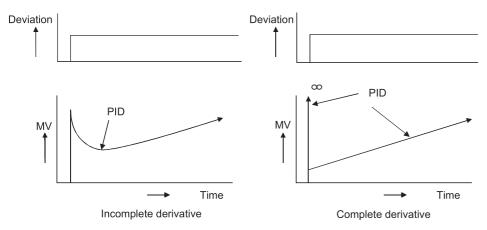
The S.PIDCONT instruction is the incomplete derivative PID control instruction.


Incomplete derivative is effective for the following cases.

- · Control susceptible to high-frequency noise
- When energy effective to actuate an operation end is not given when a step change occurs in a complete derivative system

■[Complete derivative]

Complete derivative is PID control that uses the input of a derivative term as it is.


The PIDCONT instruction is the complete derivative PID control instruction.

PID operation

The control method when proportional operation (P operation), integral operation (I operation), and derivative operation (D operation) are used in combination is described below.

- During PID operation, the system is controlled by the MV (manipulated value) calculated in the (P + I + D) operation.
- PID operation in step response with a constant E (deviation) is illustrated below.

Other Functions

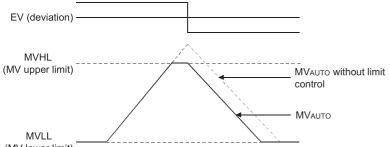
During PID control using the PID control instructions, MV upper/lower limit control is automatically executed by the bumpless changeover function explained below.

Bumpless changeover function

- · This function controls the MV (manipulated value) continuously when the control mode is changed between manual and automatic.
- When the mode is changed (between manual and automatic), data is transferred between the "MV area for automatic mode (automatic MV)" and "MV area for manual mode (manual MV)" as described below. The control mode is changed in the I/O data area (I Page 51 I/O Data).

Mode switching	Description
Changing from the manual mode to the automatic mode	The MV in the manual mode is transmitted to the MV area for the automatic mode.
Changing from the automatic mode to the manual mode	The MV in the automatic mode is transmitted to the MV area for the manual mode.

Point P


Manual and automatic modes of PID control:

- Automatic mode: PID operation is executed with a PID control instruction. The control object is controlled according to the calculated MV.
- · Manual mode: PID operation is not executed. The MV is calculated by the user and the control object is controlled according to the user-calculated MV.

The loop set in the manual mode stores the PV (process value) in the set value area every sampling cycle.

MV upper/lower limit control function

- The MV upper/lower limit control function controls the upper or lower limit of the MV calculated in the PID operation. This function is only effective in the automatic mode. It cannot be executed in the manual mode.
- · By setting the MV upper limit (MVHL) and the MV lower limit (MVLL), the MV calculated in the PID operation can be controlled within the range between the limits.

(MV lower limit)

· When the MV upper/lower limit control is used, the MV is controlled as illustrated above. A MVHL (MV upper limit) and MVLL (MV lower limit) takes on a value between -50 and 2050 or a user-defined value (except the QnACPU). The following are the default settings: The value set for the upper limit must not be smaller than the value set for the lower limit. An error will occur if it is.

MV	Default value
Upper limit	2000 (Or user-defined value)
Lower limit	0 (Or user-defined value)

Function for transfer to the SV storage device for the PV in manual mode

When using the PID control instruction to perform PID control, execute the PID operation instruction also in the manual mode. In the manual mode, it is possible to select whether the PV imported from the A/D converter module is transferred to the SV storage device or not when the PID operation instruction is executed, depending on the ON/OFF status of the PID bumpless processing flag (SM774, SM794).

PID Bumpless Proce	D Bumpless Processing Flag Operation	
SM794 (Incomplete derivative)	SM774 (Complete derivative)	
OFF		 The PV is transferred to the SV storage device when the PID operation instruction is executed. When the manual mode is switched to the automatic mode, the MV output in the manual mode is continued. When the SV is changed after switching to the automatic mode, control is performed to achieve the SV, starting from the MV output in the manual mode.
ON		 The PV is not transferred to the SV storage device when the PID operation instruction is executed. When the manual mode is switched to the automatic mode, control is performed to achieve the SV, starting from the MV output in the manual mode. Before switching to the automatic mode, store the SV into the SV storage device.

Mode switching from manual to automatic depending on ON/OFF of SM774 and SM794

There are the following differences in control when the manual mode is switched to the automatic mode.

- When SM774/SM794 is OFF, the PV is transferred to the SV storage device. Therefore, there is no difference between the PV and SV when the manual mode is switched to the automatic mode. Hence, an abrupt change does not occur in MV at the time of mode switching. Instead, since the SV after mode switching differs from the target value in the automatic mode, the user should change the SV to the target value step by step in the sequence program.
- When SM774/SM794 is ON, the PV is not transferred to the SV storage device. Therefore, there is a difference between
 the PV and SV when the manual mode is switched to the automatic mode. If the difference is large at the time of mode
 switching, an abrupt change may occur in MV. Use this method in a system where the mode is switched when the PV has
 fully neared the SV. PID control in the automatic mode can be executed immediately without the SV being changed step by
 step in the sequence program.

Point P

The SV and PV are stored into the devices specified in the I/O data area with the PID operation instruction.

Changing the PID control data or input/output data setting range (for QCPU and LCPU)

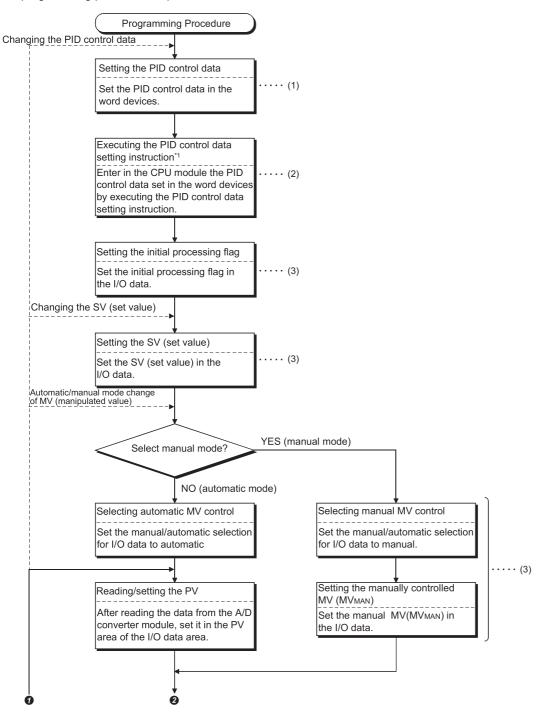
The setting range of the following data of the PID control data (refer to Section 5.1) and I/O data (refer to Section 5.2) can be changed. (S Page 36 PID Control Data, Page 51 I/O Data)

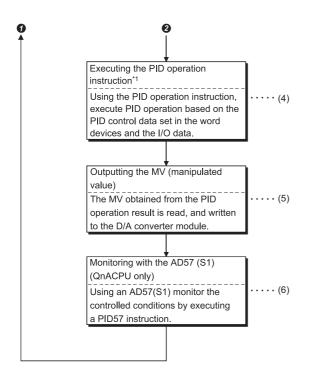
Item	Set Data
PID control data	MV lower limit value
	MV upper limit value
	MV change rate limit value
	PV change rate limit value
I/O data	SV
	PV
	Automatic MV
	PV after filtering
	Manual MV

To make the user setting valid, turn the bit corresponding to the relevant loop of the PID limit setting special register (SD774, SD775, SD794, SD795) to "1".

PID Limit Setting Special Register		Setting Range	
Incomplete derivative	Complete derivative		
SD794	SD774	b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1	
SD795	SD775	b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1	

0: With PID limit (0 to 2000)


1: Without PID limit (-32768 to 32767)


Point P

The Basic model QCPU has 8 loops. b0 to b7 of SD774 and SD794 are valid.

5 PID CONTROL PROCEDURE

The programming procedure required to execute PID control is shown below.

- (1) The Page 36 PID Control Data
- (2) 🖙 Page 60 PID control data settings, 🖙 Page 72 PID control data settings
- (3) 🖙 Page 51 I/O Data
- (4) 🖙 Page 61 PID operation, 🖙 Page 74 PID control
- (5) The MV, obtained from the PID operation result, is stored in the I/O data area. (Figure 2010) Page 51 I/O Data)
- (6) This step is not necessary when monitoring is not required.

Point P

- Registering or changing the PID control data per sequence program scan will present no problem. However, execute the PID control data setting instructions ^{*2} when you registered or changed the PID control data. If you do not execute the PID control data setting instructions instruction, the data registered or the correction made to the PID control data will not be reflected at the execution of the the PID operation instructions.
- You need not execute the PID control data setting instructions when using the parameter change instruction ^{*3} to change the PID control data per loop.
- *1 The following instructions are available as the PID operation instructions. S.PIDCONT (incomplete derivative) PIDCONT (complete derivative)
- *2 The following instructions are available as the PID control data setting instructions.
 S.PIDINIT (incomplete derivative)
 PIDINIT (complete derivative)
- *3 The following instructions are available as the parameter change instructions.
 S. PIDPRMW (incomplete derivative)
 PIDPRMW (complete derivative)

5.1 PID Control Data

PID control data is used to set the reference values for PID operation.

Store the PID control data into the CPU module with the PID control data setting^{*2} instruction before executing PID operation instruction^{*1}.

The PID control data is classified into two types, "common data for all loops" and "data for individual loops".

- *1 The following are available as the PID operation instructions. S.PIDCONT (incomplete derivative) PIDCONT (complete derivative)
- *2 The following are available as the PID control data setting instructions. S.PIDINIT (incomplete derivative) PIDINIT (complete derivative)

PID Control Data List

■For Basic model QCPU

· Incomplete derivative

Setting	Data	Data Item	Description	Incomplete	Incomplete derivative				
data	No.			With PID lim	nits	Without PID	limits	when Set Data is Outside the	
				Setting Range	User Specification Range	Setting Range	User Specification Range	Allowable Setting Range	
Common setting data	1	Number of loops	Sets the number of loops for which PID operation will be executed.	1 to 8	1 to 8	1 to 8	1 to 8	An error occurs and PID operation is not executed for	
	2	Number of loops in one scan	Sets the number of loops for which single PID operation will be executed when the multiple loops reaches the sampling cycle time.	1 to 8	1 to 8	1 to 8	1 to 8	all loops.	

Setting	Data No.	Data Item	Description	Incomplete	derivative			Processing when Set Data
data	No.			With PID lim	nits	Without PID	limits	
				Setting Range	User Specification Range	Setting Range	User Specification Range	is Outside the Allowable Setting Range
Data for each loop	1	Selection of operational expression	Selects the PID operational expression indicated in Section 3.1.2/Section 3.2.2. (Page 15 Operation expressions, Page 21 Operation expressions)	Forward operation: 0 Reverse operation: 1	0 or 1	Forward operation: 0 Reverse operation: 1	0 or 1	An error occurs and PID operation for the corresponding loop is not executed.
	2	Sampling cycle (T _S)	Sets the cycle of PID operation.	0.01 to 60.00s	1 to 6000 (unit: 10 ms)	0.01 to 60.00s	1 to 6000 (unit: 10 ms)	
	3	Proportional constant (K _P)	PID operation Proportional gain	0.01 to 100.00	1 to 10000 (unit: 0.01)	0.01 to 100.00	1 to 10000 (unit: 0.01)	
	4	Integral constant (T _I)	This constant expresses the magnitude of the integral operation (I operation) effect. Increasing the integral constant slows down the manipulated value change.	$\begin{array}{c} 0.1 \ \text{to} \\ 3000.0 \text{s} \\ \hline \text{Infinite}(\infty) \\ (\text{If the setting} \\ \text{for } T_1 \\ \text{exceeds} \\ 3000.0 \ \text{s}) \end{array}$	1 to 32767 (unit: 100 ms)	0.1 to 3000.0s Infinite(∞) (If the setting for T ₁ exceeds 3000.0 s)	1 to 32767 (unit: 100 ms)	An error occurs and PID operation for the corresponding loop is not executed.
	5	Derivative constant (T _D)	This constant expresses the magnitude of the derivative operation (D operation) effect. Increasing the derivative constant causes a significant change in the manipulated value even with slight change of the control objective.	0.00 to 300.00s	0 to 30000 (unit: 10 ms)	0.00 to 300.00s	0 to 30000 (unit: 10 ms)	An error occurs and PID operation for the corresponding loop is not executed.
	6	Filter coefficient (α)	Sets the degree of filtering applied to the process value. The filtering effect decreases as the value gets closer to 0.	0 to 100%	0 to 100	0 to 100%	0 to 100	
	7	MV Lower limit (MVLL)	In the automatic mode, sets the lower limit for the MV (manipulated value) calculated in PID operation. When the MV is less than the MV lower limit, the MVLL is used as the MV.	-50 to 2050	-50 to 2050	-32768 to 32767	-32768 to 32767	In the case of "with PID limits", PID operation is performed after conversion into the following value. • When the MVLL
	8	MV Upper limit (MVHL)	In the automatic mode, sets the upper limit for the MV calculated in PID operation. When the MV is greater than the MV upper limit, the MVHL is used as the MV.	-50 to 2050	-50 to 2050	-32768 to 32767	-32768 to 32767	or MVHL value is less than -50, "-50" is used. • When the MVLL or MVHL value is greater than 2050, "2050" is used.

Setting	Data	Data Item	Description	Incomplete	derivative			Processing when Set Data
data	No.			With PID lin	nits	Without PID	limits	
				Setting Range	User Specification Range	Setting Range	User Specification Range	is Outside the Allowable Setting Range
Data for each loop	9	MV change rate limit (Δ MVL)	Sets the limit for variation between the previous MV and present MV. When the MV variation is greater than the limit value, 1 is set for bit 1 (b1) of the alarm device. Does not limit the MV variation. (If the MV variation is greater than the limit value, it is used unchanged as the MV variation to calculate the MV.)	0 to 2000	0 to 2000	-32768 to 32767	-32768 to 32767	In the case of "with PID limits", PID operation is performed after conversion into the following value. • When the ΔMVL value is less than -50, it is converted into - 50. • When the ΔMVL value is greater than 2050, it is converted into 2050.
	10	PV change rate limit (Δ PVL)	Sets the limit for variation between the previous PV and present PV. When the PV variation is greater than the limit value, 1 is set for bit 0 (b0) of the alarm device. Does not limit the PV variation. (If the PV variation is greater than the limit value, it is used unchanged as the PV variation to perform the PID operation.)	0 to 2000	0 to 2000	-32768 to 32767	-32768 to 32767	 In the case of "with PID limits", PID operation is performed after conversion into the following value. When the ΔPVL value is less than -50, it is converted into - 50. When the ΔPVL value is greater than 2050, it is converted into 2050.
	11	Derivative gain (K _D)	Sets a time period (operation delay) for derivative operation. As the value is greater, the time period decreases and operation becomes closer to complete derivative.	$\begin{array}{c} 0.00 \text{ to} \\ 300.00 \\ (\text{Ideal value} \\ \text{is } 8.00) \\ \\ \text{Infinite}(\infty) \\ (\text{If the setting} \\ \text{for } K_{\text{D}} \\ \text{exceeds} \\ 300.00) \end{array}$	0 to 32767 (unit: 0.01)	0.00 to 300.00 (Ideal value is 8.00) Infinite(∞) (If the setting for K _D exceeds 300.00)	0 to 32767 (unit: 0.01)	An error occurs and PID operation for the corresponding loop is not executed.

· Complete derivative

Setting	Data	Data Item	Description	Complete d	erivative			Processing	
data	No.			With PID lim	nits	Without PID	limits	when Set Data is Outside the	
				Setting Range	User Specification Range	Setting Range	User Specification Range	Allowable Setting Range	
Common setting data	1	Number of loops	Sets the number of loops for which PID operation will be executed.	1 to 8	1 to 8	1 to 8	1 to 8	An error occurs and PID operation is not executed for	
	2	Number of loops in one scan	Sets the number of loops for which single PID operation will be executed when the multiple loops reaches the sampling cycle time.	1 to 8	1 to 8	1 to 8	1 to 8	all loops.	
Data for each loop	1	Selection of operational expression	Selects the PID operational expression indicated in Section 3.1.2/Section 3.2.2. (Page 15 Operation expressions, 21 Operation expressions)	Forward operation: 0 Reverse operation: 1	0 or 1	Forward operation: 0 Reverse operation: 1	0 or 1	An error occurs and PID operation for the corresponding loop is not executed.	
	2	Sampling cycle (T _S)	Sets the cycle of PID operation.	0.01 to 60.00s	1 to 6000 (unit: 10 ms)	0.01 to 60.00s	1 to 6000 (unit: 10 ms)		
	3	Proportional constant (K _P)	PID operation proportional gain	0.01 to 100.00	1 to 10000 (unit: 0.01)	0.01 to 100.00	1 to 10000 (unit: 0.01)		
	4	Integral constant (T _I)	This constant expresses the magnitude of the integral operation (I operation) effect. Increasing the integral constant slows down the manipulated value change.	$\begin{array}{c} 0.1 \ \text{to} \\ 3000.0 \text{s} \\ \\ \text{Infinite}(\infty) \\ (\text{If the setting} \\ \text{for } T_{I} \\ \text{exceeds} \\ 3000.0 \ \text{s}) \end{array}$	1 to 32767 (unit: 100 ms)	0.1 to 3000.0s Infinite(∞) (If the setting for T _I exceeds 3000.0 s)	1 to 32767 (unit: 100 ms)	An error occurs and PID operation for the corresponding loop is not executed.	
	5	Derivative constant (T _D)	This constant expresses the magnitude of the derivative operation (D operation) effect. Increasing the derivative constant causes a significant change in the manipulated value even with slight change of the control objective.	0.00 to 300.00s	0 to 30000 (unit: 10 ms)	0.00 to 300.00s	0 to 30000 (unit: 10 ms)	An error occurs and PID operation for the corresponding loop is not executed.	
	6	Filter coefficient (α)	Sets the degree of filtering applied to the process value. The filtering effect decreases as the value gets closer to 0.	0 to 100%	0 to 100	0 to 100%	0 to 100		
	7	MV Lower limit (MVLL)	In the automatic mode, sets the lower limit for the MV (manipulated value) calculated in PID operation. When the MV is less than the MV lower limit, the MVLL is used as the MV.	-50 to 2050	-50 to 2050	-32768 to 32767	-32768 to 32767	In the case of "with PID limits", PID operation is performed after conversion into the following value. • When the MVLL	
	8	MV Upper limit (MVHL)	In the automatic mode, sets the upper limit for the MV calculated in PID operation. When the MV is greater than the MV upper limit, the MVHL is used as the MV.	-50 to 2050	-50 to 2050	-32768 to 32767	-32768 to 32767	or MVHL value is less than -50, "-50" is used. • When the MVLL or MVHL value is greater than 2050, "2050" is used.	

Setting	Data	Data Item	Description	Complete d	Complete derivative				
data	No.			With PID lin	nits	Without PID	limits	when Set Data	
				Setting Range	User Specification Range	Setting Range	User Specification Range	is Outside the Allowable Setting Range	
Data for each loop	9	MV change rate limit (Δ MVL)	Sets the limit for variation between the previous MV and present MV. When the MV variation is greater than the limit value, 1 is set for bit 1 (b1) of the alarm device. Does not limit the MV variation. (If the MV variation is greater than the limit value, it is used unchanged as the MV variation to calculate the MV.)	0 to 2000	0 to 2000	-32768 to 32767	-32768 to 32767	In the case of "with PID limits", PID operation is performed after conversion into the following value. • When the ΔMVL value is less than -50, it is converted into - 50. • When the ΔMVL value is greater than 2050, it is converted into 2050.	
	10	PV change rate limit(∆ PVL)	Sets the limit for variation between the previous PV and present PV. When the PV variation is greater than the limit value, 1 is set for bit 0 (b0) of the alarm device. Does not limit the PV variation. (If the PV variation is greater than the limit value, it is used unchanged as the PV variation to perform the PID operation.)	0 to 2000	0 to 2000	-32768 to 32767	-32768 to 32767	 In the case of "with PID limits", PID operation is performed after conversion into the following value. When the ΔPVL value is less than -50, it is converted into - 50. When the ΔPVL value is greater than 2050, it is converted into 2050. 	
	11	Derivative gain (K _D)	Sets a time period (operation delay) for derivative operation. As the value is greater, the time period decreases and operation becomes closer to complete derivative.	_	-	_	_	An error occurs and PID operation for the corresponding loop is not executed.	

■For High Performance model QCPU, Redundant CPU, Universal model QCPU, and LCPU

Incomplete derivative

Setting	Data	Data Item	Description	Incomplete	Incomplete derivative				
data	No.			With PID lin	nits	Without PID limits		when Set Data	
				Setting Range	User Specification Range	Setting Range	User Specification Range	is Outside the Allowable Setting Range	
Common setting data	1	Number of loops	Sets the number of loops for which PID operation will be executed.	1 to 32	1 to 32	1 to 32	1 to 32	An error occurs and PID operation is not executed for	
	2	Number of loops in one scan	Sets the number of loops for which single PID operation will be executed when the multiple loops reaches the sampling cycle time.	1 to 32	1 to 32	1 to 32	1 to 32	all loops.	

Setting	Data No.	Data Item	Description	Incomplete	derivative			Processing
data	No.			With PID lin	nits	Without PID	limits	when Set Data
				Setting Range	User Specification Range	Setting Range	User Specification Range	is Outside the Allowable Setting Range
Data for each loop	1	Selection of operational expression	Selects the PID operational expression indicated in Section 3.1.2/Section 3.2.2. (Page 15 Operation expressions, 21 Operation expressions)	Forward operation: 0 Reverse operation: 1	0 or 1	Forward operation: 0 Reverse operation: 1	0 or 1	An error occurs and PID operation for the corresponding loop is not executed.
	2	Sampling cycle (T _S)	Sets the cycle of PID operation.	0.01 to 60.00s	1 to 6000 (unit: 10 ms)	0.01 to 60.00s	1 to 6000 (unit: 10 ms)	
	3	Proportional constant (K _P)	PID operation proportional gain	0.01 to 100.00	1 to 10000 (unit: 0.01)	0.01 to 100.00	1 to 10000 (unit: 0.01)	
	4	Integral constant (T _I)	This constant expresses the magnitude of the integral operation (I operation) effect. Increasing the integral constant slows down the manipulated value change.	$\begin{array}{c} 0.1 \ to \\ 3000.0s \end{array}$ Infinite(∞) (If the setting for T ₁ exceeds 3000.0 s)	1 to 32767 (unit: 100 ms)	0.1 to 3000.0s Infinite(∞) (If the setting for T ₁ exceeds 3000.0 s)	1 to 32767 (unit: 100 ms)	An error occurs and PID operation for the corresponding loop is not executed.
	5	Derivative constant (T _D)	This constant expresses the magnitude of the derivative operation (D operation) effect. Increasing the derivative constant causes a significant change in the manipulated value even with slight change of the control objective.	0.00 to 300.00s	0 to 30000 (unit: 10 ms)	0.00 to 300.00s	0 to 30000 (unit: 10 ms)	An error occurs and PID operation for the corresponding loop is not executed.
	6	Filter coefficient (a)	Sets the degree of filtering applied to the process value. The filtering effect decreases as the value gets closer to 0.	0 to 100%	0 to 100	0 to 100%	0 to 100	
	7	MV Lower limit (MVLL)	In the automatic mode, sets the lower limit for the MV (manipulated value) calculated in PID operation. When the MV is less than the MV lower limit, the MVLL is used as the MV.	-50 to 2050	-50 to 2050	-32768 to 32767	-32768 to 32767	For the High Performance model QCPU "with PID limits" or the QnACPU, PID operation is performed after conversion into
	8	MV Upper limit (MVHL)	In the automatic mode, sets the upper limit for the MV calculated in PID operation. When the MV is greater than the MV upper limit, the MVHL is used as the MV.	-50 to 2050	-50 to 2050	-32768 to 32767	-32768 to 32767	the following value. • When the MVLL or MVHL value is less than -50, it is converted into -50. • When the MVLL or MVHL value is greater than 2050, it is converted into 2050.

Setting	Data	Data Item	Description	Incomplete	derivative			Processing
data	No.			With PID lin	nits	Without PID	limits	when Set Data
				Setting Range	User Specification Range	Setting Range	User Specification Range	is Outside the Allowable Setting Range
Data for each loop	9	MV change rate limit (Δ MVL)	Sets the limit for variation between the previous MV and present MV. When the MV variation is greater than the limit value, 1 is set for bit 1 (b1) of the alarm device. Does not limit the MV variation. (If the MV variation is greater than the limit value, it is used unchanged as the MV variation to calculate the MV.)	0 to 2000	0 to 2000	-32768 to 32767	-32768 to 32767	 In the case of "with PID limits", PID operation is performed after conversion into the following value. When the ΔMVL value is less than 0, it is converted into 0. When the ΔMVL value is greater than 2000, it is converted into 2000.
	10	PV change rate limit (Δ PVL)	Sets the limit for variation between the previous PV and present PV. When the PV variation is greater than the limit value, 1 is set for bit 0 (b0) of the alarm device. Does not limit the PV variation. (If the PV variation is greater than the limit value, it is used unchanged as the PV variation to perform the PID operation.)	0 to 2000	0 to 2000	-32768 to 32767	-32768 to 32767	 In the case of "with PID limits", PID operation is performed after conversion into the following value. When the ΔPVL value is less than 0, it is converted into 0. When the ΔPVL value is greater than 2000, it is converted into 2000.
	11	Derivative gain (K _D)	Sets a time period (operation delay) for derivative operation. As the value is greater, the time period decreases and operation becomes closer to complete derivative.	$\begin{array}{c} 0.00 \text{ to} \\ 300.00 \\ (\text{Ideal value} \\ \text{is } 8.00) \\ \\ \text{Infinite}(\infty) \\ (\text{If the setting} \\ \text{for } \text{K}_{\text{D}} \\ \text{exceeds} \\ 300.00) \end{array}$	0 to 32767 (unit: 0.01)	$\begin{array}{c} 0.00 \text{ to } 300.00\\ (\text{Ideal value is}\\ 8.00)\\\\\hline\\ \text{Infinite}(\infty)\\ (\text{If the setting}\\ \text{for } K_{D}\\ \text{exceeds}\\ 300.00)\\ \end{array}$	0 to 32767 (unit: 0.01)	An error occurs and PID operation for the corresponding loop is not executed.

· Complete derivative

Setting	Data	Data Item	Description	Complete d		Processing		
data	No.			With PID lin	nits	Without PID	limits	when Set Data
				Setting Range	User Specification Range	Setting Range	User Specification Range	is Outside the Allowable Setting Range
Common setting data	1	Number of loops	Sets the number of loops for which PID operation will be executed.	1 to 32	1 to 32	1 to 32	1 to 32	An error occurs and PID operation is not executed for
	2	Number of loops in one scan	Sets the number of loops for which single PID operation will be executed when the multiple loops reaches the sampling cycle time.	1 to 32	1 to 32	1 to 32	1 to 32	all loops.
Data for each loop	1	Selection of operational expression	Selects the PID operational expression indicated in Section 3.1.2/Section 3.2.2. (Page 15 Operation expressions, 21 Operation expressions)	Forward operation: 0 Reverse operation: 1	0 or 1	Forward operation: 0 Reverse operation: 1	0 or 1	An error occurs and PID operation for the corresponding loop is not executed.
	2	Sampling cycle (T _S)	Sets the cycle of PID operation.	0.01 to 60.00s	1 to 6000 (unit: 10 ms)	0.01 to 60.00s	1 to 6000 (unit: 10 ms)	
	3	Proportional constant (K _P)	PID operation proportional gain	0.01 to 100.00	1 to 10000 (unit: 0.01)	0.01 to 100.00	1 to 10000 (unit: 0.01)	
	4	Integral constant (T _I)	This constant expresses the magnitude of the integral operation (I operation) effect. Increasing the integral constant slows down the manipulated value change.	$\begin{array}{c} 0.1 \ to \\ 3000.0s \end{array}$ Infinite(∞) (If the setting for T ₁ exceeds 3000.0 s)	1 to 32767 (unit: 100 ms)	0.1 to 3000.0s Infinite(∞) (If the setting for T _i exceeds 3000.0 s)	1 to 32767 (unit: 100 ms)	An error occurs and PID operation for the corresponding loop is not executed.
	5	Derivative constant (T _D)	This constant expresses the magnitude of the derivative operation (D operation) effect. Increasing the derivative constant causes a significant change in the manipulated value even with slight change of the control objective.	0.00 to 300.00s	0 to 30000 (unit: 10 ms)	0.00 to 300.00s	0 to 30000 (unit: 10 ms)	An error occurs and PID operation for the corresponding loop is not executed.
	6	Filter coefficient (α)	Sets the degree of filtering applied to the process value. The filtering effect decreases as the value gets closer to 0.	0 to 100%	0 to 100	0 to 100%	0 to 100	

Setting	Data	Data Item	Description	Complete o	lerivative			Processing	
data	No.			With PID lin	nits	Without PII) limits	when Set Data	
				Setting Range	User Specification Range	Setting Range	User Specification Range	is Outside the Allowable Setting Range	
Data for each loop	7	MV Lower limit (MVLL)	In the automatic mode, sets the lower limit for the MV (manipulated value) calculated in PID operation. When the MV is less than the MV lower limit, the MVLL is used as the MV.	-50 to 2050	-50 to 2050	-32768 to 32767	-32768 to 32767	For the High Performance model QCPU "with PID limits" or the QnACPU, PID operation is performed after conversion into	
	8	MV Upper limit (MVHL)	In the automatic mode, sets the upper limit for the MV calculated in PID operation. When the MV is greater than the MV upper limit, the MVHL is used as the MV.	-50 to 2050	-50 to 2050	-32768 to 32767	-32768 to 32767	the following value. • When the MVLL or MVHL value is less than -50, it is converted into -50. • When the MVLL or MVHL value is greater than 2050, it is converted into 2050.	
	9	MV change rate limit (Δ MVL)	Sets the limit for variation between the previous MV and present MV. When the MV variation is greater than the limit value, 1 is set for bit 1 (b1) of the alarm device. Does not limit the MV variation. (If the MV variation is greater than the limit value, it is used unchanged as the MV variation to calculate the MV.)	0 to 2000	0 to 2000	-32768 to 32767	-32768 to 32767	 In the case of "with PID limits", PID operation is performed after conversion into the following value. When the ΔMVL value is less than 0, it is converted into 0. When the ΔMVL value is greater than 2000, it is converted into 2000. 	
	10	PV change rate limit (Δ PVL)	Sets the limit for variation between the previous PV and present PV. When the PV variation is greater than the limit value, 1 is set for bit 0 (b0) of the alarm device. Does not limit the PV variation. (If the PV variation is greater than the limit value, it is used unchanged as the PV variation to perform the PID operation.)	0 to 2000	0 to 2000	-32768 to 32767	-32768 to 32767	In the case of "with PID limits", PID operation is performed after conversion into the following value. • When the ΔPVL value is less than 0, it is converted into 0. • When the ΔPVL value is greater than 2000, it is converted into 2000.	
	11	Derivative gain (K _D)	Sets a time period (operation delay) for derivative operation. As the value is greater, the time period decreases and operation becomes closer to complete derivative.	-	_	-	_	An error occurs and PID operation for the corresponding loop is not executed.	

■For QnACPU

Setting data	Data No.	Data Item	Description	Setting Range	User Specifi- cation Range	Processing when Set Data is Outside the Allowable Setting Range		
Common setting	1	Number of loops	Sets the number of loops for which PID operation will be executed.	1 to 32	1 to 32	An error occurs and PID operation is not executed for all loops.		
data	2	Number of loops in one scan	Sets the number of loops for which single PID operation will be executed when the multiple loops reaches the sampling cycle time.	1 to 32	1 to 32			
Data for each loop	1	Selection of operational expression	Selects the PID operational expression indicated in Section 3.2.2. (Page 21 Operation expressions)	Forward operation: 0 Reverse operation: 1	0 or 1	An error occurs and PID operation for the corresponding loop is not executed.		
	2	Sampling cycle (T _S)	Sets the cycle of PID operation.	0.01 to 60.00s	1 to 6000 (unit: 10 ms)			
	3	Proportional constant (K _P)	PID operation ratio	0.01 to 100.00	1 to 10000 (unit: 0.01)			
	4	Integral constant (T _I)	This constant expresses the magnitude of the integral operation (I operation) effect.	0.1 to 3000.0s	1 to 32767 (unit: 100 ms)	An error occurs and PID operation for the corresponding loop is not		
			Increasing the integral constant slows down the manipulated value change.	Infinite(∞) (If the setting for TI exceeds 3000.0 s)		executed.		
	5	Derivative constant (T _D)	This constant expresses the magnitude of the derivative operation (D operation) effect. Increasing the derivative constant causes a significant change in the manipulated value even with slight change of the control objective.	0.00 to 300.00s	0 to 30000 (unit: 10 ms)	An error occurs and PID operation for the corresponding loop is not executed.		
	6	Filter coefficient (α)	Sets the degree of filtering applied to the process value. The filtering effect decreases as the value gets closer to 0.	0 to 100%	0 to 100			
	7	MV Lower limit (MVLL)	In the automatic mode, sets the lower limit for the MV (manipulated value) calculated in PID operation. When the MV is less than the MV lower limit, the MVLL is used as the MV.	-50 to 2050	-50 to 2050	 PID operation is performed after conversion into the following value. When the MVLL or MVHL value is less than -50, it is converted into - 50. 		
	8	MV Upper limit (MVHL)	In the automatic mode, sets the upper limit for the MV calculated in PID operation. When the MV is greater than the MV upper limit, the MVHL is used as the MV.	-50 to 2050	-50 to 2050	• When the MVLL or MVHL value is greater than 2050, it is converted into 2050.		
	9	MV change rate limit (Δ MVL)	Sets the limit for variation between the previous MV and present MV. When the MV variation is greater than the limit value, 1 is set for bit 1 (b1) of the alarm device. Does not limit the MV variation. (If the MV variation is greater than the limit value, it is used unchanged as the MV variation to calculate the MV.)	0 to 2000	0 to 2000	 PID operation is performed after conversion into the following value. When the ∆MVL value is less than 0, it is converted into 0. When the ∆MVL value is greater than 2000, it is converted into 2000. 		
	10	PV change rate limit (Δ PVL)	Sets the limit for variation between the previous PV and present PV. When the PV variation is greater than the limit value, 1 is set for bit 0 (b0) of the alarm device. Does not limit the PV variation. (If the PV variation is greater than the limit value, it is used unchanged as the PV variation to perform the PID operation.)	0 to 2000	0 to 2000	 PID operation is performed after conversion into the following value. When the ΔPVL value is less than 0, it is converted into 0. When the ΔPVL value is greater than 2000, it is converted into 2000. 		

PID control data allocations

PID control data can be set in any word device number. However, all the data used for the corresponding loops must be set in devices with consecutive numbers. The PID control data allocations are shown below.

■For incomplete derivative

Specified device number +0	Number of loops]		
+1	Number of loops in 1 scan	Ĵ	Common to all lo	ops
+2	Selection of operational expression))
+3	Sampling cycle (Ts)			
+4	Proportional constant (KP)			
+5	Integral constant (Tı)			
+6	Derivative constant (TD)			
+7	Filter coefficient (α)			
+8	MV lower limit (MVLL)		For loop No.1	
+9	MV upper limit (MVHL)		(14 words)	
+10	MV change rate limit (△MVL)			
+11	PV change rate limit (△PVL)			
+12	0 *			
+13	Derivative gain (KD)			
+14	0 *			
+15	0 *			
+16	Selection of operational expression	1		
+17	Sampling cycle (Ts)			
+18	Proportional constant (KP)			
+19	Integral constant (Ti)			
+20	Derivative constant (TD)			
+21	Filter coefficient (α)			
+22	MV lower limit (MVLL)		For loop No.2	
+23	MV upper limit (MVHL)		(14 words)	For the total
+24	MV change rate limit (Δ MVL)			number of
+25	PV change rate limit (ΔPVL)			loops to be
+26	0*			used
+27	Derivative gain (KD)			
+28	0*			
+29	0 *			
to	to			
+(m + 0)	Selection of operational expression			
+(m + 1)	Sampling cycle (Ts)			
+(m + 2)	Proportional constant (KP)			
+(m + 3)	Integral constant (Ti)			
+(m + 4)	Derivative constant (TD)			
+(m + 5)	Filter coefficient (α)			
+(m + 6)	MV lower limit (MVLL)		For loop No.n	
+(m + 7)	MV upper limit (MVHL)		(14 words)	
+(m + 8)	MV upper limit (MVTL) MV change rate limit (Δ MVL)		(
+(m + 9)	PV change rate limit (Δ PVL)			
+(m + 10)				
+(m + 11)	Derivative gain (KD)			
+(m + 12)	0 *			
+(m + 12) +(m + 13)	0*			
·(iii * 13)		J)
	m=(n-1) × 14+2		

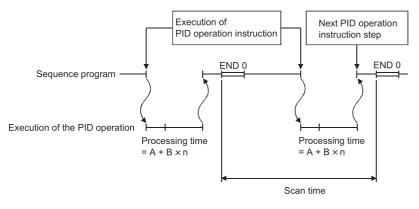
Store 0 into the " * " marked area of the PID control data.

If other than 0 is stored into the " * " marked area, an error occurs and processing is not performed. (Error code: 4100)

- Use the following formula to calculate the number of device points to be used when setting the PID control data: Number of device points = 2 + 14 \times n (n: Number of loops to be used)
- Set each data as a binary value.
- If the number of device points for the number of used loops exceeds the last device number of the specified device, an error occurs and processing is not performed. (Error code: 4101)

■For complete derivative

Specified device number +0	Number of loops		Conmon to all loc	20
+1	Number of loops in 1 scan	∫	Common to all loc	ps
+2	Selection of operational expression)
+3	Sampling cycle (Ts)			
+4	Proportional constant (KP)			
+5	Integral constant (Tı)			
+6	Derivative constant (TD)	F	For loop No.1	
+7	Filter coefficient (α)	(10 words)	
+8	MV lower limit (MVLL)			
+9	MV upper limit (MVHL)			
+10	MV change rate limit (ΔMVL)			
+11	PV change rate limit (△PVL)			
+12	Selection of operational expression	j		
+13	Sampling cycle (Ts)			
+14	Proportional constant (KP)			
+15	Integral constant (Tı)			
+16	Derivative constant (TD)	F	For loop No.2	
+17	Filter coefficient (α)		(10 words)	
+18	MV lower limit (MVLL)			For the total
+19	MV upper limit (MVHL)			number of
+20	MV change rate limit (ΔMVL)			loops to be used
+21	PV change rate limit (△PVL)			useu
+22	Selection of operational expression	ĺ.		
+23	Sampling cycle (Ts)	×	For loop No.3 (10 words)	
			(10 Words)	
to	to			
+(m + 0)	Selection of operational expression)		
+(m + 1)	Sampling cycle (Ts)			
+(m + 2)	Proportional constant (KP)			
+(m + 3)	Integral constant (Ti)			
+(m + 4)	Derivative constant (TD)	F	or loop No.n	
+(m + 5)	Filter coefficient (α)		(10 words)	
+(m + 6)	MV lower limit (MVLL)	`	. ,	
+(m + 7)	MV upper limit (MVHL)			
+(m + 8)	MV change rate limit (Δ MVL)			
+(m + 9)	PV change rate limit (Δ PVL)			
、 -)	J) × 10+2		/


- Use the following formula to calculate the number of device points to be used when setting the PID control data: Number of device points = $2 + 10 \times n$ (n: Number of loops to be used)
- Set each data as a binary value.
- If the number of device points used for the corresponding loops exceeds the last device number of the specified device, an error occurs and processing is not performed. (Error code: 4101)

Number of loops to be used and the number of loops to be executed in a single scan

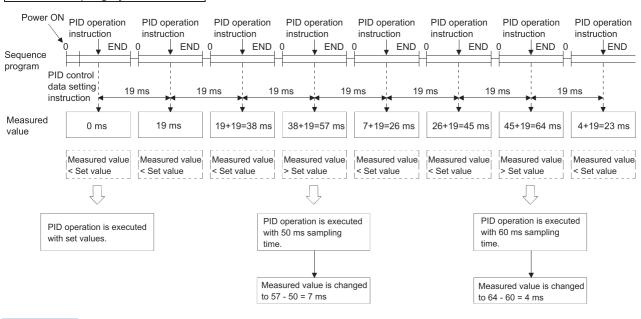
- The number of loops to be used means the number of loops for which PID operation is executed. The sampling cycle time is measured for the set number of loops when the PID operation instruction*1 is executed. PID operation is executed for the loop for which the sampling cycle time reaches or exceeds the set sampling cycle.
- · Processing time increases in proportion to the number of loops for which PID operation is executed when the PID operation instruction is executed.

Operational expression	Meaning of symbols
Processing time = A + B \times n	A: Fixed time for measuring sampling time B: Time required to execute PID operation for a loop n = Number of loops

• The number of loops to be executed in a single scan means the number of loops for which PID operation is executed in one scan when there is more than one loop for which sampling cycle time reaches or exceeds the set sampling cycle when the PID operation instruction is executed. If the number of loops to be executed in a single scan is set, PID operation is only executed for the set number of loops even if there are a greater number of loops for which the sampling cycle time reaches or exceeds the set sampling cycle when the PID operation instruction is executed. PID operation is executed for the rest of the loops in the next scan.

Point P

If the number of loops for which sampling cycle time reaches or exceeds the set sampling cycle is greater than the number of loops to be executed in a single scan, the PID operation execution priority is as follows:


- The lowest numbered loop is given the highest priority.
- If there are loops in the preceding scan for which PID operation has not been executed, they are given the highest priority.

The following instructions are available as the PID operation instructions. S.PIDCONT (incomplete derivative) PIDCONT (complete derivative)

5.1 PID Control Data

Sampling cycle

- A sampling cycle is the cycle in which PID operation is executed. The measurement time for one scan is added to the measurement time of up to the preceding scan each time a PID operation instruction^{*1} is executed. When the cumulative value reaches or exceeds the set sampling cycle, the PID operation of the corresponding loop is performed.
- The measured value of the sampling time used for PID operation is truncated to units of 10 ms. For example, if the sampling cycle setting is 50 ms and the measured value is 57 ms, PID operation is executed with a sampling time of 50 ms. If the measured value is 64 ms, PID operation is executed with a sampling time of 60 ms.

When sampling cycle = 50 ms

Point P

The sampling cycle is measured when the PID operation instruction is executed.

Therefore, a value smaller than the sequence program scan time cannot be set for the sampling cycle.

If a value smaller than the scan time is set, PID operation will be executed in accordance with the scan time.

- *1 The following instructions are available as the PID operation instructions. S.PIDCONT (incomplete derivative) PIDCONT (complete derivative)
- *2 The following instructions are available as the PID control data setting instructions. S.PIDINIT (incomplete derivative) PIDINIT (complete derivative)

5.2 I/O Data

The I/O data consists of input data, such as the SV (set value) and PV (process value), which are set to execute PID operation, and output data, such as operation results.

The I/O data area is divided into the "data area where data are allocated loop-by-loop" and "work area used by the system to perform PID operation".

I/O Data List

■QCPU, LCPU

Data Name		Description	Setting Range		Processing when Set
			With PID limits	Without PID limits	Data is Outside the Specified Range
Set value	SV	PID control target value	0 to 2000	-32768 to 32767	For the QCPU or LCPU with "With PID limits" setting or QnACPU, convert it to the following value for PID operation. When SV is less than 0, SV must be 0. When SV is greater than 2000, SV must be 2000.
Process value	PV	Feedback data from controlled system objective to A/D converter module	-50 to 2050	-32768 to 32767	For the QCPU or LCPU with "With PID limits" setting or QnACPU, convert it to the following value for PID operation. • When PV is less than -50, PV must be -50. • When PV is greater than 2050, PV must be 2050.
Automatic manipulated value	MV	The manipulated value calculated by PID operation. Output from the D/A converter module to the controlled system.	-50 to 2050	-32768 to 32767	_
Process value after filtering	PVf	Process value calculated using the operation formula in POINT(1) in Section 3.1.2/ POINT(1) in Section 3.2.2. (Image 15 Operation expressions, Image 21 Operation expressions)	-50 to 2050	-32768 to 32767	
Manual manipulated value	MV _{MAN}	In the manual control mode, the data output from the D/A converter module is stored.	-50 to 2050	-32768 to 32767	 For the QCPU or LCPU with "With PID limits" setting or QnACPU, convert it to the following value for PID operation. When MV_{MAN} is less than 50, MV_{MAN} must be -50. When MV_{MAN} is greater than 2050, MV_{MAN} must be 2050.
Manual/ automatic selection	MAN/ AUTO	Selects whether the output data to the D/A converter module is shown as a manual manipulated value or an automatic manipulated value. In manual control mode, the automatic manipulated value remains unchanged.	0: Manual manipulated value 1: Automatic manipulated value	0: Manual manipulated value 1: Automatic manipulated value	An error occurs if the setting is neither 0 nor 1, and PID operation of the corresponding loop will not be executed.

Data Name		Description Setting Range F		Processing when Set	
	With PID limits Without PID limits		Data is Outside the Specified Range		
Alarm	ALARM	Used to determine if the change rate of the MV (manipulated value) and the PV (process value) is within or outside the allowable range. Once set, the alarm data is retained until the user resets it. If the MV is outside the limit range, "1" is set for bit 1 (b1). If the PV is outside the limit range, "1" is set for bit 0 (b0).	If the PV is outside the limit range, '1' is set for bit 0. If the MV is outside the limit range, '1' is set for bit 1.	If the PV is outside the limit range, '1' is set for bit 0. If the MV is outside the limit range, '1' is set for bit 1.	

■QnACPU

Data Name		Description	Setting Range	Processing when Set Data is Outside the Specified Range
Set value	SV PID control target value		PID control target value 0 to 2000	
Process value	PV	Feedback data from controlled system objective to A/D converter module	-50 to 2050	 For the QCPU or LCPU with "With PID limits" setting or QnACPU, convert it to the following value for PID operation. When PV is less than -50, PV must be -50. When PV is greater than 2050, PV must be 2050.
Automatic manipulated value	MV	The manipulated value calculated by PID operation. Output from the D/A converter module to the controlled system.	-50 to 2050	_
Process value after filtering	P _{Vf}	Process value calculated using the operation formula in POINT(1) in Section 3.1.2/ POINT(1) in Section 3.2.2. (Page 15 Operation expressions, Page 21 Operation expressions)	-50 to 2050	*
Manual manipulated value	MV _{MAN}	In the manual control mode, the data output from the D/A converter module is stored.	-50 to 2050	 For the QCPU or LCPU with "With PID limits" setting or QnACPU, convert it to the following value for PID operation. When MV_{MAN} is less than -50, MV_{MAN} must be -50. When MV_{MAN} is greater than 2050, MV_{MAN} must be 2050.
Manual/ automatic selection	MAN/ AUTO	Selects whether the output data to the D/A converter module is shown as a manual manipulated value or an automatic manipulated value. In manual control mode, the automatic manipulated value remains unchanged.	0: Manual manipulated value 1: Automatic manipulated value	An error occurs if the setting is neither 0 nor 1, and PID operation of the corresponding loop will not be executed.
Alarm	ALARM	Used to determine if the change rate of the MV (manipulated value) and the PV (process value) is within or outside the allowable range. Once set, the alarm data is retained until the user resets it. If the MV is outside the limit range, "1" is set for bit 1 (b1). If the PV is outside the limit range, "1" is set for bit 0 (b0).	If the PV is outside the limit range, '1' is set for bit 0. If the MV is outside the limit range, '1' is set for bit 1.	_

I/O data allocations

For the I/O data, any word device number can be specified. However, all the data used for the corresponding loops must be set in devices with consecutive numbers.

The I/O data allocations are shown below.

■For incomplete derivative

Designated device number +0	Initial processing flag	> Write		
+1	Work area for PID control	Read/write		
to	(cannot be used)	disabled		
+9		{		`
+10	Set value (SV)	Write		
+11	Process value (PV)	{ white		
+12	Automatic manipulated value (MV)	> Read		
+13	Process value after filtering (PVf)		I/O data area	
+14	Manual manipulated value (MV _{MAN})	≻ Write	<pre>> for loop 1</pre>	
+15	Manual/automatic selection (MAN/AUTO)		(23 words)	
+16	Alarm (ALARM)	Read/write		
+17	Work area for No. 1 loop	Read/write		
to +32	(cannot be used)	disabled		
+32	Set value (SV)	{		
+34	Process value (PV)	≻ Write		
+35	Automatic manipulated value (MV)	1		
+35	Process value after filtering (PVf)	> Read		
+37	Manual manipulated value (MV _{MAN})	1	I/O data area	
+38	Manual/automatic selection (MAN/AUTO)	≻ Write	<pre>for loop 2 (22 words)</pre>	
+39	Alarm (ALARM)	} Read/write	(23 words)	Number
+40		1		Number
to	Work area for No. 2 loop	Read/write		to be used
+55	(cannot be used)		J	
+56	Set value (SV)			
+57	Process value (PV)	} Write	I/O data area ≻ for loop 3	
+58	Automatic manipulated value (MV)	} Read	(23 words)	
+59			(20 110100)	
to	to		/	
+ (m + 0)	Set value (SV)	ا		
+(m+1)	Process value (PV)	≻ Write		
+ (m + 2)	Automatic manipulated value (MV)	1		
+ (m + 3)	Process value after filtering (PVf)	≻ Read		
+(m+4)	Manual manipulated value (MV _{MAN})	1	I/O data area	
+ (m + 5)	Manual/automatic selection (MAN/AUTO)	≻ Write	For loop n (23 words)	
+ (m + 6)	Alarm (ALARM)	> Read/write	(23 words)	
+ (m + 7)				
to	Work area for No. n loop (cannot be used)	Read/write		
+ (m + 22)		disabled		J
	m=(n-1) × 23+10			

• Use the following formula to calculate the number of device points to be used when setting the input/output data: Number of device points = $10 + 23 \times n$ (n: Number of loops to be used)

- Set each data as a binary value.
- The initial processing flag sets the processing method at the start of PID operation. In the initial PID operation processing cycle, operation is executed assuming that the set sampling cycle is reached or exceeded. The initial processing flag is set in the following manner:

Set value	Description
0	PID operation is batch processed in a single scan for the number of loops to be used.
Other than 0	PID operation is processed in several scans for the number of loops to be used. Sampling begins sequentially from the loop for which the initial processing has been completed. The number of processing loops per scan is the set number of loops to be executed per scan.

- Where "write" is designated for a data area, it indicates that the data should be written with a user sequence program. Where "read" is designated for a data area, it indicates that the data should be read with a user sequence program. Never attempt to write data to a data area designated "read/write disabled" or "read". If this is attempted, correct PID operation will not be possible. Note that when control is to be started from the initial status, data must be cleared with a sequence program.
- If the number of device points used for the corresponding loops exceeds the last device number of the specified device, an error occurs and processing is not performed. (Error code: 4101)

For complete derivative

Designated device number +0	Initial processing flag	} Write		
+1	Work area for PID control	Read/write		
to	(cannot be used)	disabled		
+9		}	、	2
+10	Set value (SV)	Write		
+11	Process value (PV)	{ white		
+12	Automatic manipulated value (MV)	Read		
+13	Process value after filtering (PVf)	J	I/O data area	
+14	Manual manipulated value (MV _{MAN})	Write	for loop 1	
+15	Manual/automatic selection (MAN/AUTO)	J	(18 words)	
+16	Alarm (ALARM)	Read/write		
+17	Work area for No. 1 loop	Read/write		
to	(cannot be used)	disabled		
+27 +28	Set value (SV)	{	j	
+20	Process value (PV)	> Write		
+30	Automatic manipulated value (MV)	ί		
+31	Process value after filtering (PVf)	> Read		
+32	Manual manipulated value (MV _{MAN})	1	I/O data area	
+33	Manual/automatic selection (MAN/AUTO)	> Write	For loop 2 (18 words)	
+34	Alarm (ALARM)	Read/write	(10 words)	
+35		1		Number
to	Work area for No. 2 loop (cannot be used)	Read/write		to be used
+45	(cannot be used)		J	
+46	Set value (SV)			
+47	Process value (PV)	} Write	I/O data area	
+48	Automatic manipulated value (MV)	<pre>} Read</pre>	≻ for loop 3 (18 words)	
+49				
to	to		2	
+ (m + 0)	Set value (SV))	
+ (m + 1)	Process value (PV)	≻ Write		
+ (m + 2)	Automatic manipulated value (MV)	$\{$		
+ (m + 3)	Process value after filtering (PVf)	Read		
(m + 3)	Manual manipulated value (MV _{MAN})	1	I/O data area	
+ (m + 5)	Manual/automatic selection (MAN/AUTO)	├ Write	for loop n	
+ (m + 6)	Alarm (ALARM)	} ≻ Read/write	(18 words)	
+ (m + 7)				
to	Work area for No. n loop	Read/write		
+ (m + 17)	(cannot be used)	disabled	J	J

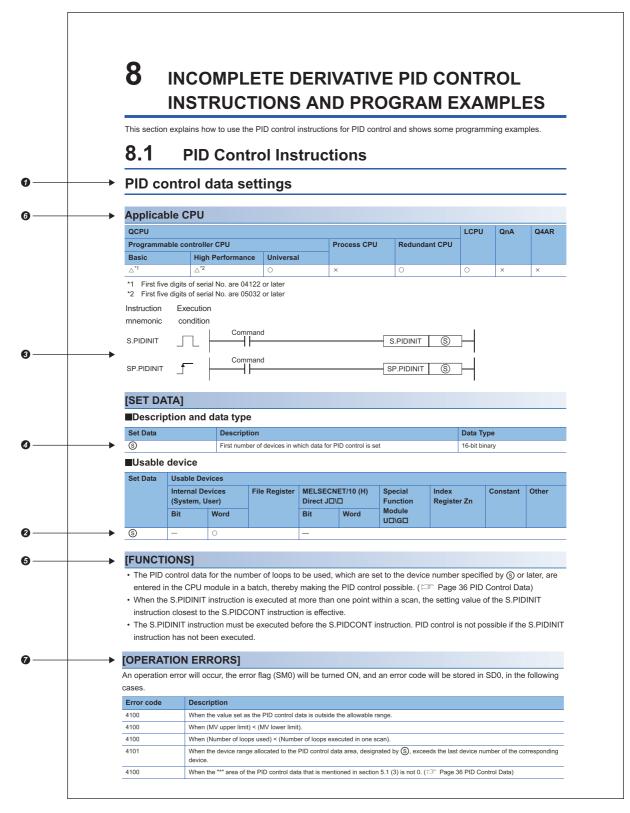
m=(n-1) × 18+10

- Use the following formula to calculate the number of device points to be used when setting the I/O data: Number of device points = $10 + 18 \times n$ (n: Number of loops to be used)
- Set each data as a binary value.
- The initial processing flag sets the processing method at the start of PID operation. In the initial PID operation processing cycle, operation is executed assuming that the set sampling cycle is reached or exceeded. The initial processing flag is set in the following manner:

Set value	Description
0	PID operation is batch processed in a single scan for the number of loops to be used.
Other than 0	PID operation is processed in several scans for the number of loops to be used. Sampling begins sequentially from the loop for which the initial processing has been completed. The number of processing loops per scan is the set number of loops to be executed per scan.

Where "write" is designated for a data area, it indicates that the data should be written with a user sequence program.
 Where "read" is designated for a data area, it indicates that the data should be read with a user sequence program. Never attempt to write data to a data area designated "read/write disabled" or "read". If this is attempted, correct PID operation will not be possible. Note that when control is to be started from the initial status, data must be cleared with a sequence program.

• If the number of device points for the number of used loops exceeds the last device number of the specified device, an error occurs and processing is not performed. (Error code: 4101)


6 PID CONTROL INSTRUCTIONS

The structure of PID control instructions is the same as that of common instructions for the Basic model QCPU, High Performance model QCPU, Redundant CPU, Universal model QCPU, LCPU, and QnACPU.

For details on the configuration of control instructions, see the QCPU (Q mode)/QnACPU Programming Manual (Common Instructions.)

7 HOW TO READ EXPLANATIONS FOR INSTRUCTIONS

The explanations for instructions presented in the next section take the following form.

58

Section number and general description of the instruction

2 "O" is appended to those devices that can be used with the instruction. The classes of use into which the devices that can be used are divided are as follows.

Device Classificat	Internal Dev user)	ice (system,	File Register	MELSECNET/10 (H)J□\□ ^{*3}		Special Function	Index Constant ^{*1} Register	Constant ^{*1}	Other ^{*1}
ion	Bit	Word		Bit	Word	Module U⊡\G⊡	Zn		
Usable devices ^{*4}	X, Y, M, L, SM, F, B, SB, FX, FY ^{*2}	T, ST, C ^{*5} , D, W, SD, SW, FD, @□	R, ZR	JD\X JD\Y JD\B JD\SB	J¤\W J¤\SW	UD\GD	Z	Decimal number Hexadecimal number Real number constant Character string constant	P, I, J, U, DX, DY, N, BL, TR, BL\S, V

*1 The devices that can be set are indicated in the "Constant" and "Other" columns.

*2 FX and FY can only be used with bit data, and FD can only be used with word data.

*3 Can be used with MELSECNET/G, MELSECNET/H and MELSECNET/10.

*4 For explanation of each device, refer to the User's Manual (Function Explanation, Program Fundamentals) of the CPU module used, or the QnACPU Programming Manual (Fundamentals).

*5 T, ST and C can be used as the word devices only.

3 Indicates the expressions and instruction execution conditions in the ladder mode.

Execution Condition	Executed while ON	Executed once at OFF \rightarrow ON
Symbol used on the explanation page		

Section 2012 Explains the set data for each instruction and indicates the data type.

Data Type	Description
16-bit binary	Indicates that binary 16-bit data or the first number of a word device can be used.

Indicates the function of the instruction.

6 This shows a CPU module to which instructions are given.

 \bigcirc : Usable, \triangle : Usable on condition, \times : Unusable

Indicates the conditions that will cause errors and the error numbers.

8 INCOMPLETE DERIVATIVE PID CONTROL INSTRUCTIONS AND PROGRAM EXAMPLES

This section explains how to use the PID control instructions for PID control and shows some programming examples.

8.1 PID Control Instructions

PID control data settings

Applicable CPU

QCPU	QCPU								
Programmable c]								
Basic	High Performance	Universal							
△ ^{*1}	^{*2}	0	×	0	0	×	×		
*1 First five digits of serial No. are 04122 or later *2 First five digits of serial No. are 05032 or later Instruction Execution mnemonic condition									
S.PIDINIT S.PIDINIT S									
SP.PIDINIT	Comman	d	S	P.PIDINIT S]				

[SET DATA]

Description and data type

Set Data	Description	Data Type
S	First number of devices in which data for PID control is set	16-bit binary

■Usable device

Set Data	Usable Dev	vices							
Internal (System				· · · ·		Special Function	Index Register Zn	Constant	Other
	Bit	Word		Bit	Word	Module U⊡\G⊡			
S	—	0		—					

[FUNCTIONS]

60

- The PID control data for the number of loops to be used, which are set to the device number specified by (s) or later, are entered in the CPU module in a batch, thereby making the PID control possible. (Page 36 PID Control Data)
- When the S(P).PIDINIT instruction is executed at more than one point within a scan, the setting value of the S(P).PIDINIT instruction closest to the S(P).PIDCONT instruction is effective.
- The S(P).PIDINIT instruction must be executed before the S(P).PIDCONT instruction. PID control is not possible if the S(P).PIDINIT instruction has not been executed.

[OPERATION ERRORS]

An operation error will occur, the error flag (SM0) will be turned ON, and an error code will be stored in SD0, in the following cases.

Error code	Description
4100	When the value set as the PID control data is outside the allowable range.
4100	When (MV upper limit) < (MV lower limit).
4100	When (Number of loops used) < (Number of loops executed in one scan).
4101	When the device range allocated to the PID control data area, designated by (S), exceeds the last device number of the corresponding device.
4100	When the "*" area of the PID control data that is mentioned in section 5.1 (3) is not 0. (FF Page 36 PID Control Data)

PID operation

Applicable CPU

QCPU	LCPU	QnA	Q4AR				
Programmable controller CPU Process CPU Redundant CPU							
Basic	High Performance	Universal					
△*1	△*2	0	×	0	0	×	×

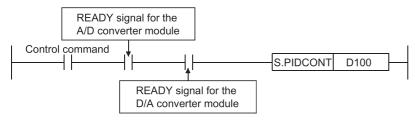
*1 First five digits of serial No. are 04122 or later

*2 First five digits of serial No. are 05032 or later

Instruction	Executior	ו		
mnemonic	condition			
S.PIDCONT		Command	S.PIDCONT	S –
SP.PIDCONT		Command	SP.PIDCONT	<u>s</u>

[SET DATA]

Description and data type


Set Data	Description	Data Type
S	First number of devices allocated to I/O device area	16-bit binary

■Usable device

Set Data	Usable De	able Devices									
	Internal Devices (System, User)		File Register	MELSECNET/10 (H) Direct J⊡\⊡		Special Function	Index Register Zn	Constant	Other		
	Bit	Word		Bit	Word	Module U⊡\□					
S	—	0		—							

[FUNCTION]

- When the S(P).PIDCONT instruction is executed, the sampling cycle is measured and PID operation is performed.
- With the S(P).PIDCONT instruction, PID operation is carried out on the basis of the set value (SV) and process value (PV) in the I/O data area set to the device number specified by (s) or later, and the operation result is stored into the automatically manipulated value (MV) area of the I/O data area.
- PID operation is executed in response to the execution of the S(P).PIDCONT instruction appearing first after the set time for sampling cycle has elapsed. (SP Page 50 Sampling cycle)
- During PID control, turn ON the control command to execute the S(P).PIDCONT instruction in every scan. If not, PID operation in a normal sampling cycle will not available. It is not possible to execute the S(P).PIDCONT instruction more than once in one scan. If it is executed more than once in one scan, PID operation cannot be performed in a normal sampling cycle.
- The S(P).PIDCONT instruction is not available for use in an interrupt program, fixed scan execution type program or low speed execution type program. If the S(P).PIDCONT instruction has been used in an interrupt program, fixed scan execution type program or low speed execution type program, PID operation cannot be performed in a normal sampling cycle.
- For (s), designate the first number of the device numbers that are designated in the I/O data area. If file registers (R) are designated for the I/O data area, do not set memory protect ON for the file registers (R). If memory protect is set ON, correct PID operation will be precluded, although no error will occur. (Page 51 I/O Data)
- Execute the S(P).PIDCONT instruction in every scan even while the manual manipulated value (MV_{MAN}) is being output in the manual control mode. The bumpless switching cannot be executed if the S(P).PIDCONT instruction has not been executed. (SP Page 31 Bumpless changeover function)
- Use the READY signal to establish an interlock with respect to the individual modules, so that the S(P).PIDCONT
 instruction is executed only when both the A/D converter module for reading the PV (process value) and the D/A converter
 module for outputting the MV (manipulated value) are normal. If the S(P).PIDCONT instruction is executed while either or
 both of the modules are faulty, PID operation cannot be executed correctly because the PV (process value) cannot be read
 correctly and/or the MV (manipulated value) cannot be output correctly.

[OPERATION ERRORS]

An operation error will occur, the error flag (SM0) will be turned ON, and an error code will be stored in SD0, in the following cases.

Error code	Description
4103	When the S(P).PIDINIT instruction is not executed before executing the S(P).PIDCONT instruction.
4100	When the value set as the PID control data is outside the allowable range.
4101	When the device range allocated to the PID control data area, designated with (S), exceeds the last device number of the corresponding device.

For details on the READY signals of the A/D converter module and D/A converter module, refer to the manual for the relevant module.

Operation stop/start of designated loop no.

QCPU	LCPU	QnA	Q4AR				
Programmable co	ntroller CPU		Process CPU	Redundant CPU			
Basic	High Performance	Universal					
∆ ^{*1}	∆* 2	0	×	0	0	×	×
nstruction Exe	of serial No. are 05032 ocution idition			indica	ites PIDS	TOP/PIDF	RUN
S.PIDSTOP S.PIDRUN			S	3 (n)]		
SP.PIDSTOP	_ Command	d	S	SP. n]		

[SET DATA]

Description and data type

Set Data	Description	Data Type
(n)	Loop number at which start/stop is to be executed	16-bit binary

■Usable device

Set Data	Usable De	vices							
	Internal Devices (System, User)		File Register MELSECNET/10 (H) Direct J□\□		Special Function	Index Register Zn	Constant K, H	Other	
	Bit	Word		Bit	Word	Module U⊟\G⊟			
(n)	0			—			· · · · · · · · · · · · · · · · · · ·	0	—

[FUNCTION]

■S.PIDSTOP, SP.PIDSTOP

- Stops the PID operation for the loop number designated by (n). The loop stopped by the S(P).PIDSTOP instruction does not resume PID operation even if the S(P).PIDINIT instruction is executed.
- · Retains the operation data during the stop.

■S.PIDRUN, SP.PIDRUN

- Starts the PID operation of the loop No. specified by (n). This instruction is designed to re-execute PID operation of the loop No. that has stopped with the S(P).PIDSTOP instruction.
- This instruction will be ignored if the instruction is executed for the loop No. that is currently running PID operation.

[OPERATION ERRORS]

An operation error will occur and the error flag (SM0) will be turned ON in the following cases.

Error code	Description
4100	When the loop number designated by (n) does not exist.
4100	When (n) is outside the range 1 to 8. (Basic model QCPU)
4100	When (n) is any other than 1 to 32. (High Performance model QCPU, Redundant CPU, Universal model QCPU, LCPU)
4103	When the S(P).PIDINIT and S(P).PIDCONT instructions have not been executed before execution of the S(P).PIDSTOP instruction.
4103	When the S(P).PIDINIT and S(P).PIDCONT instructions have not been executed before execution of the S(P).PIDRUN instruction.

Parameter change at designated loop

QCPU					LCPU	QnA	Q4AR
Programmable co	Programmable controller CPU Process CPU Redundant CPU				-		
Basic	High Performance	Universal					
∆ ^{*1}	^{*2}	0	×	0	0	×	×
Instruction Ex	of serial No. are 05032 ecution ndition				I		
S.PIDPRMW			S.PIDPRM	w n S]		
	I Comman	d			1		

[SET DATA]

■Description and data type

Set Data	Description	Data Type
(n)	Loop number for which change is to be made	16-bit binary
S	First number of devices in which PID control data to be changed is stored	

■Usable device

S	et Data	Usable De	Usable Devices							
		Internal Devices File Regis (System, User)		File Register	r MELSECNET/10 (H) Direct J□\□		Special Function	Index Register Zn	Constant K, H	Other
		Bit	Word		Bit	Word	Module U⊟\G⊟			
(r	ו)	0	0		—				0	—
(3)	—	0						—	

[FUNCTIONS]

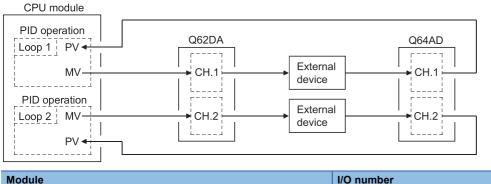
- Changes the operation parameter for the loop number designated by (s) to the PID control data stored in the devices starting with the device number designated by (s).
- The configuration of the data for PID control which starts from the device number designated by (s) is shown below. For details on PID control data, see Section 5.1. (

Setting data	Description
<u>(</u> \$)+0	Selection of operational expression
<u>(</u> \$)+1	Sampling cycle (T _S)
<u>(</u>)+2	Proportional constant (K _P)
S +3	Integral constant (T ₁)
<u>(S)</u> +4	Derivative constant (T _D)
S +5	Filter coefficient (α)
S +6	MV lower limit (MVLL)
<u>(</u>)+7	MV upper limit (MVHL)
<u>(</u>)+8	MV change rate limit (Δ MVL)
<u>(</u>)+9	PV change rate limit (ΔPVL)
S+10	0
<u>(</u> \$)+11	Derivative gain (K _D)
<u>(</u> \$)+12	0
S+13	0

64

[OPERATION ERRORS]

An operation error will occur and the error flag (SM0) will be turned ON, and error code will be stored in SD0, in the following cases.


Error code	Description
4100	When the loop number designated by (n) does not exist.
4100	When (n) is outside the range 1 to 8. (Basic model QCPU)
4100	When (n) is any other than 1 to 32. (High Performance model QCPU, Redundant CPU, Universal model QCPU, LCPU)
4100	When the PID control data is outside the setting range.
4100	When any of (s) + 10, (s) + 12 and (s) + 13 in the PID control data is not 0.
4101	When the device range assigned to the PID control data area by (S) exceeds the last device number of the applicable range.
4103	When the S(P).PIDINIT instruction has not been executed before execution of the S(P).PIDPRMW instruction.

8.2 PID Control Program Examples

This section describes examples of sequence programs that execute PID control.

System configuration for program examples

The following illustrates the system configuration for the program examples.

Module	I/O number
Q64AD	X/Y80 to X/Y8F
Q62DA	X/YA0 to X/YAF

Program example for automatic mode PID control

This section gives a program example in which PID operation is performed using the digital values imported from the Q64AD as PV and the MV obtained as a result of PID operation are output from the Q62DA to control external devices.

[PROGRAMMING CONDITIONS]

- · PID operation is executed for 2 loops.
- The sampling cycle is 1 second.

66

• The PID control data is set in the following devices: (I Page 36 PID Control Data)

PID control data	Device name
Common data	D500 to D501
Loop 1 data	D502 to D515
Loop 2 data	D516 to D529

• The I/O data is set in the following devices: (🖙 Page 51 I/O Data)

I/O data	Device name
Common data	D600 to D609
Loop 1 data	D610 to D632
Loop 2 data	D633 to D655

• The following SV are set for loop 1 and loop 2 using a sequence program:

Loop	SV
Loop 1	600
Loop 2	1000

• The following devices are used for PID control start/stop commands.

Command	Device name
PID control start command	X0
PID control stop command	X1

• The digital values of the Q64AD and Q62DA are set within the range 0 to 2000.

[PRO	GRAM EXAMPLE]				
SM402		NOV	KO	0500	Sets the number of loops to
	L,	MOV	K2	D500	be used to 2.
	[1	MOV	K2	D501	Sets the number of loops to be executed per scan to 2.
	[MOV	KO	D502	Sets the operation expression to forward operation.
	[]	MOV	K100	D503	Sets the sampling cycle to 1s.
	[1	MOV	K100	D504	Sets the proportional constant to 1.
	[]	MOV	K30000	D505	Sets the integral constant to 3000s.
	[MOV	K0	D506	Sets the derivative constant to 0s.
	[MOV	KO	D507	Sets the filter coefficient to 0%.
	[]	MOV	KO	D508	Sets the MV lower limit to 0.
	[][]	MOV	K2000	D509	Sets the MV upper limit to 2000.
	()	MOV	K2000	D510	Sets the MV change rate limit to 2000.
	[MOV	K2000	D511	Sets the PV change rate limit to 2000.
	[MOV	ко	D512] Sets 0.

-[mov

-[MOV

-[mov

K800

K0

K0

D513

D514

D515

3

7 Sets 0.

Sets 0. 3

Sets the derivative gain to 8.

Setting of common data of PID control data

Setting of PID control data for loop 1

SM402				Sets the operation
33	Ewon	K1	D516	expression to reverse operation.
	Емол	K100	D517	Sets the sampling cycle to 1s.
	-[mov	K100	D518	Sets the proportional constant to 1.
	-[mov	K30000	D519	Sets the integral constant to 3000s.
	[mov	КО	D520	Sets the derivative constant to 0s.
	[mov	КО	D521	Bets the filter coefficient to 0%.
	-[mov	КО	D522	Sets the MV lower limit Setting of PID control data
	-[mov	K2000	D523	Sets the MV upper limit to 2000.
	-[mov	K2000	D524	Sets the MV change rate limit to 2000.
	[mov	K2000	D525	Sets the PV change rate limit to 2000.
	[mov	КО	D526] Sets 0.
	Ewon	K800	D527	Sets the derivative gain to 8.
	-[mov	КО	D528] Sets 0.
	-[mov	КО	D529] Sets 0.
62 SM402	ES. PIDINI	т	D500	Sets the PID control data that are set in D500 to D529.
хоао 70	-[mov	КО	UOA\ GO	Ĺ
		-[set	YOA9	Sets the Q62DA to output enable.
X0A0 X0A9 Y0A9 76		-[rst	YOA9	J)
80	-[mov	КО	D600	Sets the initial processing flag to 0.
	Емол	K600	D610	Sets the SV to 600.
	-[mov	КО	D615	Setting of 1/0 data for loop 1 data for loop 1
	Ewon	K1000	D633	Sets the SV to 1000.
	-[mov	КО	D638	Sets the automatic mode.
91 XO		-[set	MO	PID operation start command
I				I
93 X80 MO	-[MOV	U8\ G11	D611	Sets the PV from the Q64AD to the I/O data area (for loop 1).
	-[mov	U8\ G12	D634	Sets the PV from the Q64AD to the I/O data area (for loop 2).
103 MO	-[S. PIDCO	NT	D600	PID operation
111 XOAO MO		-[SET	YOA1	Turns ON the output enable of CH. 1 of the Q62DA.
		-[SET	Y0A2	Turns ON the output enable of CH. 2 of the Q62DA.
	-[mov	D612	UOA\ G1	Writes the MV of loop 1 to CH. 1 of the Q62DA.
	-[mov	D635	UOA\ G2	Writes the MV of loop 2 to CH. 2 of the Q62DA.
		-[rst	MO] PID operation stop

Program example for changing the PID control mode between automatic and manual

An example program for switching between automatic and manual modes while executing PID operation is described below.

[PROGRAMMINGCONDITIONS]

• PID operation is executed for 1 loop.

The sampling cycle is 1 second.

· The PID control data is set in the following devices:

PID control data	Device name
Common data	D500 to D501
Loop 1 data	D502 to D515

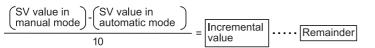
· The I/O data is set in the following devices:

I/O data	Device name
Common data	D600 to D609
Loop 1 data	D610 to D632

• The SV and MV in manual mode are set with external digital switches as follows:

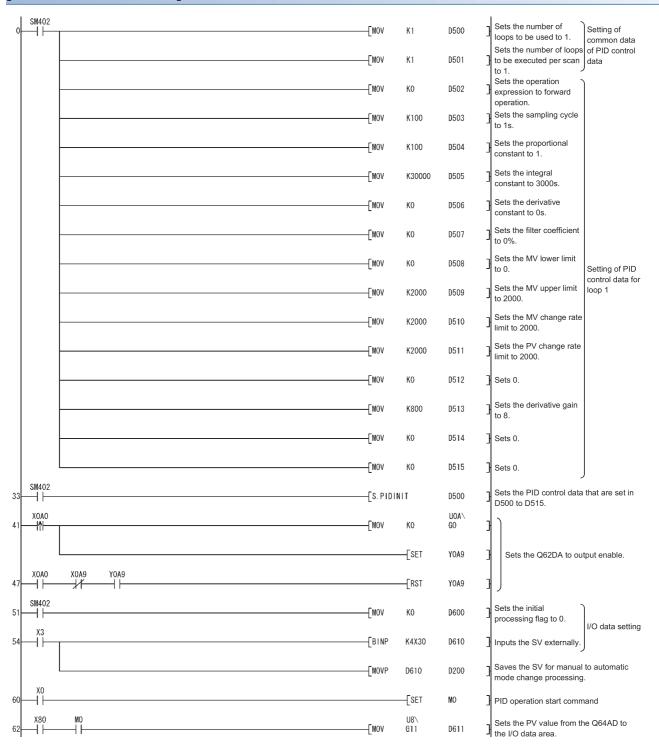
Item	Device name
SV	X30 to X3F
MV (manual control mode)	X20 to X2F

The following devices are used to start and stop PID control and the automatic/manual changeover command:

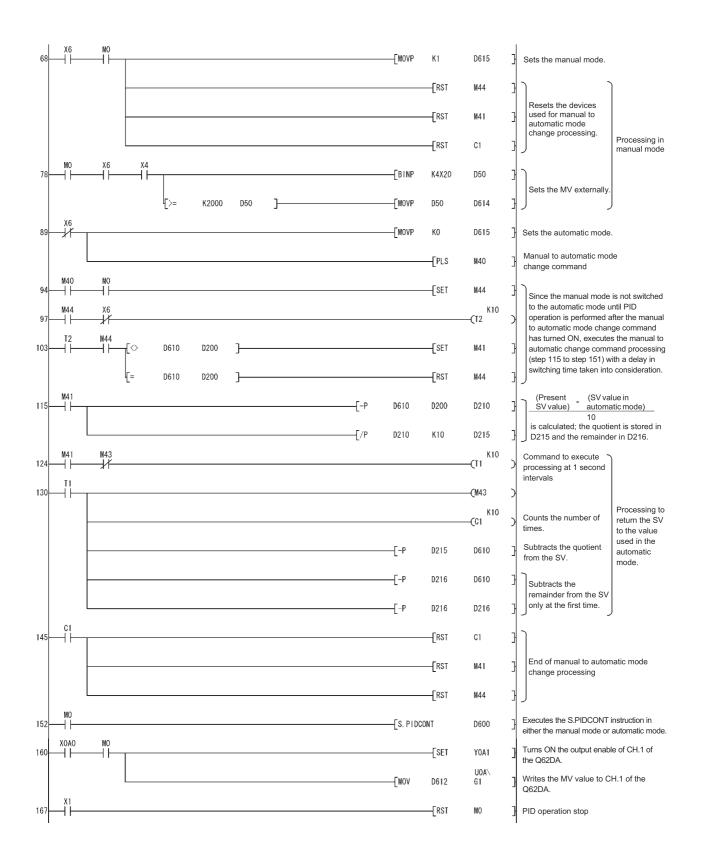

Command	Device name		
PID control start command	X0		
PID control stop command	X1		
SV setting command	X3		
MV setting command in manual mode	X4		
Automatic/manual mode changeover command	X6 (OFF: Automatic mode, ON: Manual mode)		

• The digital values of the Q64AD and Q62DA are set within the range 0 to 2000.

• The PID bumpless processing flag, SM794, is set to OFF. In the manual mode, the SV is automatically rewritten to the PV when PID operation is performed. Therefore, when the manual mode is returned to the automatic mode, the SV must be rewritten to the one used in the automatic mode before switching to the manual mode. The SV is rewritten step-by-step 10 times as illustrated below:^{*1}



*1 The SV is rewritten using the operation method illustrated below:



The incremental value obtained with the formula above is added to SV every second. The remainder is added in the first addition operation.

69

[PROGRAM EXAMPLE]

9 COMPLETE DERIVATIVE PID CONTROL INSTRUCTIONS AND PROGRAM EXAMPLES

This chapter explains the PID control instruction usage and program examples for implementing PID control.

9.1 PID Control Instructions

PID control data settings

Applicable CPU

QCPU		LCPU	QnA	Q4AR				
Programmable controller CPU			Process CPU	Redundant CPU				
Basic	High Performance	Universal						
∆ ^{*1}	0	0	×	0	0	0	0	
*1 First five digits of serial No. are 04122 or later								
mnemonic co	ndition							
	IIT Command PIDINIT S							
	_ Command	1	F	PIDINITP S]			

[SET DATA]

Description and data type

Set Data	Description	Data Type
S	First number of devices in which data for PID control is set	16-bit binary

■Usable device

Set Data	Usable Dev	sable Devices								
	Internal Devices (System, User)		File Register MELSECNET/10 (H) Direct J□\□		Special Function	Index Register Zn	Constant	Other		
	Bit	Word	-	Bit	Word	Module U⊟\G□				
S	—	0		—						

[FUNCTIONS]

- The PID control data for the number of loops to be used, which are set to the device number specified by (s) or later, are entered in the CPU module in a batch, thereby making the PID control possible. (SP Page 36 PID Control Data)
- When the PIDINIT(P) instruction is executed at more than one point within a scan, the setting value of the PIDINIT(P) instruction closest to the PIDCONT(P) instruction is effective.
- The PIDINIT(P) instruction must be executed before the PIDCONT(P) instruction. PID control is not possible if the PIDINIT(P) instruction has not been executed.

[OPERATION ERRORS]

An operation error will occur, the error flag (SM0) will be turned ON, and an error code will be stored in SD0, in the following cases.

Error code	Description
4100	When the value set as the PID control data is outside the allowable range.
4100	When (Number of loops used) < (Number of loops executed in one scan).
4100	When (MV upper limit value) < (MV lower limit value).
4101	When the device range allocated to the PID control data area, designated by (S), exceeds the last device number of the corresponding device.

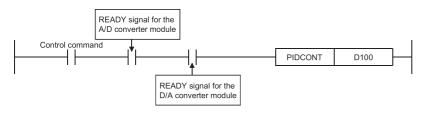
PID control

Applicable C	Applicable CPU									
QCPU	LCPU	QnA	Q4AR							
Programmable co	ntroller CPU		Process CPU	Redundant CPU						
Basic	High Performance	Universal								
∆ ^{*1}	0	0	×	0	0	0	0			
*1 First five digits of serial No. are 04122 or later Instruction Execution mnemonic condition PIDCONT Control command PIDCONT PIDCONT										
	_ Control comm	land	P]					

[SET DATA]

■Description and data type

Set Data	Description	Data Type
S	First number of devices allocated to I/O device area	16-bit binary


■Usable device

	Set Data	Usable Dev	Jsable Devices								
						MELSECNET/10 (H) Sp Direct J□\□ Fu		Index Register Zn	Constant	Other	
	Bit	Word		Bit	Word	Module U⊟\G⊟					
	S	—	0		—						

[FUNCTION]

- When the PIDCONT(P) instruction is executed, the sampling cycle is measured and PID operation is performed.
- With the PIDCONT(P) instruction, PID operation is carried out on the basis of the set value (SV) and process value (PV) in the I/O data area set to the device number specified by (s) or later, and the operation result is stored into the automatically manipulated value (MV) area of the I/O data area.
- PID operation is executed in response to the execution of the PIDCONT(P) instruction appearing first after the set time for sampling cycle has elapsed. (See Page 50 Sampling cycle)
- During PID control, turn ON the control command to execute the PIDCONT(P) instruction in every scan. If not, PID
 operation in a normal sampling cycle will not available. It is not possible to execute the PIDCONT(P) instruction more than
 once in one scan. If it is executed more than once in one scan, PID operation cannot be performed in a normal sampling
 cycle.
- The PIDCONT(P) instruction is not available for use in an interrupt program, fixed scan execution type program or low speed execution type program. If the PIDCONT(P) instruction has been used in an interrupt program, fixed scan execution type program or low speed execution type program, PID operation cannot be performed in a normal sampling cycle.
- For (s), designate the first number of the device numbers that are designated as the I/O data area. If file registers (R) are designated for the I/O data area, do not set memory protect ON for the file registers (R). If memory protect is set ON, correct PID operation will be precluded, although no error will occur. (Page 51 I/O Data)
- Execute the PIDCONT(P) instruction in every scan even while the manual manipulated value (MV_{MAN}) is being output in the manual control mode. The bumpless function cannot be executed if the PIDCONT(P) instruction has not been executed. (SP Page 31 Bumpless changeover function)

 Use the READY signal to establish an interlock with respect to the individual modules, so that the PIDCONT(P) instruction is executed only when both the A/D converter module for reading the PV (process value) and the D/A converter module for outputting the MV (manipulated value) are normal. If the PIDCONT(P) instruction is executed while either or both of the modules are faulty, PID operation cannot be executed correctly because the PV (process value) cannot be read correctly and/or the MV (manipulated value) cannot be output correctly.

[OPERATION ERRORS]

An operation error will occur, the error flag (SM0) will be turned ON, and an error code will be stored in SD0, in the following cases.

Error code	Description				
4103	When the PIDINIT(P) instruction is not executed before executing the PIDCONT(P) instruction.				
4100	When the value set as the PID control data is outside the allowable range.				
4101	When the device range allocated to the PID control data area, designated with (S), exceeds the last device number of the corresponding device.				

For details on the READY signals of the A/D converter module and D/A converter module, refer to the manual for the relevant module.

Monitoring PID control status (QnACPU only)

QCPU						LCPU	QnA	Q4AR
Programma	ble co	ntroller CPU		Process CPU	Redundant CPU	1		
Basic		High Performance	Universal	1				
×		×	×	×	×	×	0	0
nstruction nnemonic		ecution ndition						
PID57 Command PID57 (5)								
PID57P	ſ	_ Command		PID57P n	S) S2	1		

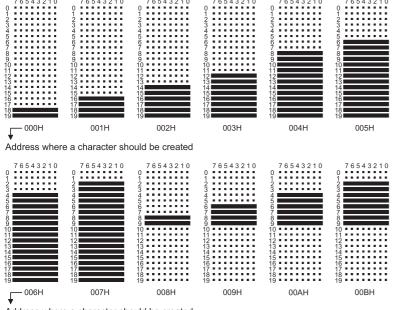
[SET DATA]

Description and data type

Set Data	Description	Data Type
(n)	First I/O number of the AD57(S1) used to monitor the PID control status	16-bit binary
§1	Screen number corresponding to the loop number to be monitored	
\$2	Initial screen display request	

■Usable device

Set Data	Usable D	able Devices								
	Internal Devices (System, User)		File Register	MELSECN	• • •	Special Function	Index Register Zn	Constant K, H	Other	
	Bit	Word	_	Bit	Word	Module U⊡\G⊡				
(n)	0	0 –								
S1	0	- 0 -						—		
\$2	0)					-	—		


[FUNCTION]

- The display unit of the AD57(S1) designated by (n) displays the PID control status of the loop number designated by (s) in a bar graph. By executing the initial screen display request, designated by (s), the characters in the still portion of the monitor screen (with the exception of bar graphs and numerical data) are displayed in the initial state of PID control monitoring.
- Addresses 0 to 1599 in the VRAM area of the AD57(S1) are used for the PID control monitor. Therefore, these addresses cannot be used by the user if PID control status monitoring is executed; if they are, the data stored in them will be lost.
- Execute the CMODE instruction (AD57 command) to monitor the PID control status before executing the PID57 instruction. If the CRT standard display mode, set with the CMODE instruction, has not been set for the AD57(S1), the display unit will not be able to display anything.
- Execute the PID57 instruction only after the PIDINIT(P) and PIDCONT(P) instructions have been executed. An error will occur if the PID57 instruction is executed before the PIDINIT(P) and PIDCONT(P) instructions.
- Designate the loop number indicated by \mathfrak{S} with a screen number from "1" to "4", as shown below:

Screen Number	Loop Numbers to be Monitored
1	Loop 1 to loop 8
2	Loop 9 to loop 16
3	Loop 17 to loop 24
4	Loop 25 to loop 32

- The initial screen display request, designated by (2), displays the characters in the still portion of the monitor screen. To make the initial screen display request, set "0" for (2). Characters besides the bar graphs and numeric data will be not displayed unless the initial screen display request is executed.
- After the initial screen is displayed, the value designated by (s) is automatically stored in (s) and then the PID control monitor function is executed. If the device designated by (s) is a file register, do not set the memory protect function for the file register ON. If the memory protect function is ON, the screen cannot display the monitor data correctly.
- The initial screen display request should only be executed once in response to the first PID57 instruction after the start of QnACPU operation. If it is executed every scan, the bar graphs and numeric data will not be displayed, although the characters in the still portion are displayed.
- To monitor PID control status with the AD57(S1), a character generator ROM and canvas ROM must be loaded to the AD57(S1). The characters shown in Figure 9.1, corresponding to character codes 000 to 00BH, must be created in the character generator ROM. If these characters are not created, bar graphs cannot be displayed. Refer to the following manuals for details on creating the character generator ROM and canvas ROM.

SW1GP-AD57P Operating Manual

Address where a character should be created

[OPERATION ERRORS]

An operation error will occur and the error flag (SM0) will be turned ON, and an error code will be stored in SD0, in the following cases.

Error code	Description			
2110	When the CMODE instruction has not been executed for AD57(S1).			
4103	When the PIDINIT(P) instruction has not been executed before the PID57 instruction.			
4103	When the PIDCONT(P) instruction has not been executed before the PID57 instruction.			
4100	When the screen number designated with (s) is outside the range of 1 to 4.			

Operation stop/start of designated loop no.

Applicable CPU								
QCPU							QnA	Q4AR
Programmabl	e cor	troller CPU		Process CPU	Redundant CPU	1		
Basic		High Performance	Universal					
∆ ^{*1}		0	0	×	0	0	0	0
*1 First five d Instruction mnemonic	Exe	of serial No. are 04122 cution dition			indica	tes PIDST	OP/PIDF	RUN
PIDSTOP PIDRUN				[]		
PIDSTOPP PIDRUNP			1	[P n]		

[SET DATA]

Description and data type

Set Data	Description	Data Type
(n)	Loop number at which start/stop is to be executed	16-bit binary

■Usable device

Set Data	Usable Devices								
	Internal Devices (System, User)		File Register	ile Register MELSECNET/10 (H) Direct J□\□		Special Function	Index Register Zn	Constant K, H	Other
	Bit	Word		Bit	Word	Module U⊟\G⊟			
(n)	0						•		—

[FUNCTION]

■PIDSTOP, PIDSTOPP

- Stops the PID operation for the loop number designated by (n). The loop stopped by the PIDSTOP(P) instruction does not resume PID operation even if the PIDINIT(P) instruction is executed.
- · Retains the operation data during the stop.

■PIDRUN, PIDRUNP

- Starts the PID operation of the loop No. specified by (n). This instruction is designed to re-execute PID operation of the loop No. that has stopped with the PIDSTOP(P) instruction.
- This instruction will be ignored if the instruction is executed for the loop No. that is currently running PID operation.

[OPERATION ERRORS]

An operation error will occur and the error flag (SM0) will be turned ON in the following cases.

Error code	Description
4100	When the loop number designated by (n) does not exist.
4100	When (n) is outside the range 1 to 8 (Basic model QCPU).
4100	When (n) is any other than 1 to 32. (High Performance model QCPU, Redundant CPU, Universal model QCPU, LCPU, and QnACPU)
4103	When the PIDINIT(P) and PIDCONT(P) instructions have not been executed before execution of the PIDSTOP(P) instruction.
4103	When the PIDINIT(P) and PIDCONT(P) instructions have not been executed before execution of the PIDRUN(P) instruction.

Parameter change at designated loop

Applicable CPU								
QCPU							QnA	Q4AR
Programmab	le cor	ntroller CPU		Process CPU	Redundant CPU			
Basic		High Performance	Universal]				
∆ ^{*1}		0	0	×	0	0	0	0
*1 First five	digits c	of serial No. are 04122	or later					
Instruction	Exe	cution						
mnemonic	con	dition						
PIDPRMW			k	PIDPRMW	n S]		
PIDPRMWP		_ Command	3	PIDPRMWF	n S]		

[SET DATA]

Description and data type

Set Data	Description	Data Type
(n)	Loop number for which change is to be made	16-bit binary
S	First number of devices in which PID control data to be changed is stored	

■Usable device

Set Data	Usable De	Usable Devices							
	Internal Devices (System, User)				Special Function	Index Register Zn	Constant K, H	Other	
	Bit	Word		Bit	Word	Module U⊟\G⊟			
(n)	0	0		0			·		—
S	-	0	0		-				—

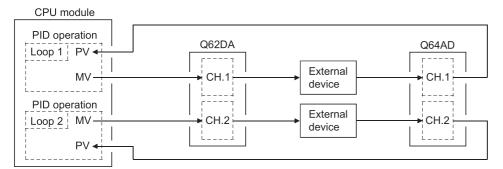
[FUNCTIONS]

- Changes the operation parameter for the loop number designated by (n) to the PID control data stored in the devices starting with the device number designated by (s).
- The configuration of the data for PID control which starts from the device number designated by (s) is shown below. For details on PID control data, see Section 5.1. (

Setting data	Description
S +0	Selection of operation expression
(S)+1	Sampling cycle (T _S)
<u>(</u>)+2	Proportional constant (K _P)
S +3	Integral constant (T _I)
<u>S</u> +4	Derivative constant (T _D)
S+5	Filter coefficient (a)
S+6	MV lower limit (MVLL)
<u>(</u>)+7	MV upper limit (MVHL)
<u>S</u> +8	MV change rate limit (ΔMVL)
(S)+9	PV change rate limit (ΔPVL)

[OPERATION ERRORS]

An operation error will occur and the error flag (SM0) will be turned ON, and error code will be stored in SD0, in the following cases.


Error code	Description
4100	When the loop number designated by (n) does not exist.
4100	When (n) is outside the range 1 to 8. (Basic model QCPU)
4100	When (n) is any other than 1 to 32. (High Performance model QCPU, Redundant CPU, Universal model QCPU, LCPU, and QnACPU)
4100	When the PID control data is outside the setting range.
4101	When the device range assigned to the PID control data area by (S) exceeds the last device number of the applicable range.
4103	When the PIDINIT(P) instruction has not been executed before execution of the PIDPRMW(P) instruction.

9.2 PID Control Program Examples (for QCPU and LCPU)

This section describes examples of sequence programs that execute PID control.

System configuration for program examples

The following illustrates the system configuration for the program examples.

Module	I/O number
Q64AD	X/Y80 to X/Y8F
Q62DA	X/YA0 to X/YAF

Program example for automatic mode PID control

This section gives a program example in which PID operation is performed using the digital values imported from the Q64AD as PV and the MV obtained as a result of PID operation are output from the Q62DA to control external devices.

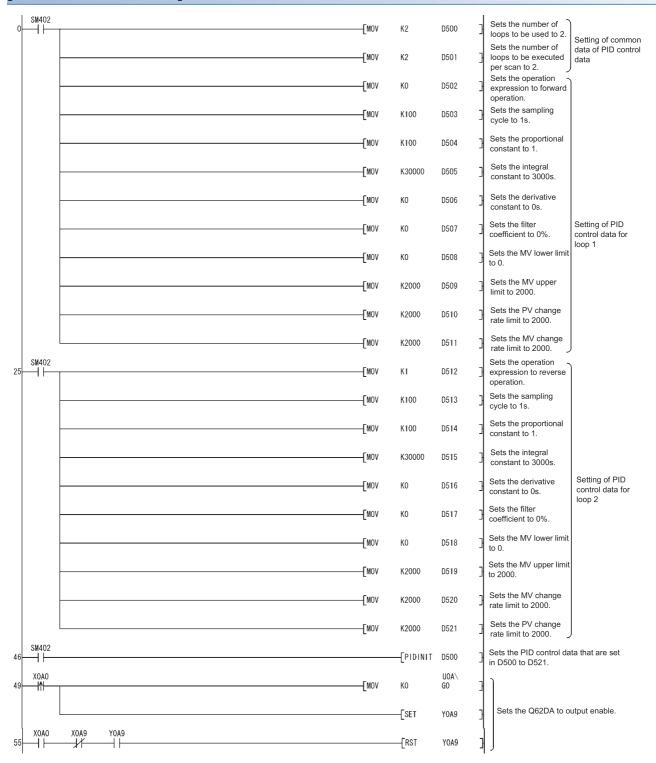
[PROGRAMMING CONDITIONS]

- · PID operation is executed for 2 loops.
- The sampling cycle is 1 second.
- The PID control data is set in the following devices: (🖙 Page 36 PID Control Data)

PID control data	Device name
Common data	D500 to D501
Loop 1 data	D502 to D511
Loop 2 data	D512 to D521

• The I/O data is set in the following devices: (I Page 51 I/O Data)

I/O data	Device name			
Common data	D600 to D609			
Loop 1 data	D610 to D627			
Loop 2 data	D628 to D645			


• The following SV are set for loop 1 and loop 2 using a sequence program:

Loop	SV
Loop 1	600
Loop 2	1000

· The following devices are used for PID control start/stop commands.

Command	Device name
PID control start command	X0
PID control stop command	X1

• The digital values of the Q64AD and Q62DA are set within the range 0 to 2000.

[PROGRAM EXAMPLE]

Program example for changing the PID control mode between automatic and manual

An example program for switching between automatic and manual modes while executing PID operation is described below.

[PROGRAMMING CONDITIONS]

PID operation is executed for 1 loop.

The sampling cycle is 1 second.

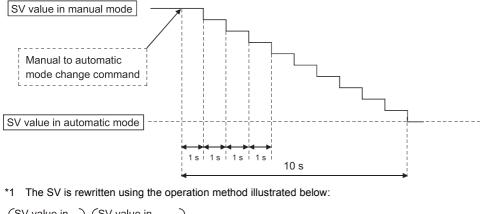
· The PID control data is set in the following devices:

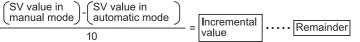
PID control data	Device name
Common data	D500 to D501
Loop 1 data	D502 to D511

· The I/O data is set in the following devices:

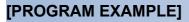
I/O data	Device name
Common data	D600 to D609
Loop 1 data	D610 to D627

• The SV and MV in manual mode are set with external digital switches as follows:

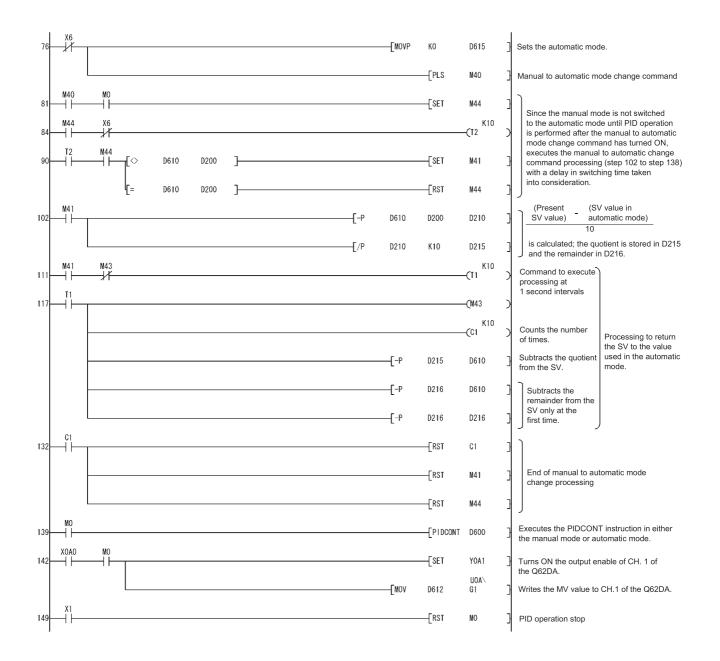

Item	Device name
SV	X30 to X3F
MV (manual control mode)	X20 to X2F


• The following devices are used to start and stop PID control and the automatic/manual changeover command:

Command	Device name			
PID control start command	X0			
PID control stop command	X1			
SV setting command	X3			
MV setting command in manual mode	X4			
Automatic/manual mode changeover command	X6 (OFF: Automatic mode, ON: Manual mode)			

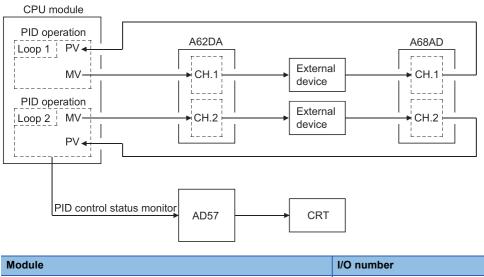

• The digital values of the Q64AD and Q62DA are set within the range 0 to 2000.

• The PID bumpless processing flag, SM774, is set to OFF. In the manual mode, the SV is automatically rewritten to the PV when PID operation is performed. Therefore, when the manual mode is returned to the automatic mode, the SV must be rewritten to the one used in the automatic mode before switching to the manual mode. The SV is rewritten step-by-step 10 times as illustrated below:^{*1}



The incremental value obtained with the formula above is added to SV every second. The remainder is added in the first addition operation.

	SM402					I)
0			-[мол	K1	D500	ŀ	Sets the number of loops to be used to 1.	Setting of common
			-[mov	K1	D501	J	Sets the number of loops to be executed per scan to 1.	data of PID control data
			-[мол	КО	D502	ŀ	Sets the operation expression to forward operation.	
			-[мол	K100	D503	ŀ	Sets the sampling cycle to 1s.	
			-[мол	K100	D504	3	Sets the proportional constant to 1.	
			-[мол	K30000	D505	ŀ	Sets the integral constant to 3000s.	
			-[mov	К0	D506	3	Sets the derivative constant to 0s.	Setting of PID control data for loop 1
			-[mov	К0	D507	3	Sets the filter coefficient to 0%.	
			-[MOV	К0	D508	3	Sets the MV lower limit to 0.	
			-[MOV	K2000	D509	3	Sets the MV upper limit to 2000.	
			-[mov	K2000	D510	3	Sets the MV change rate limit to 2000.	
			-[мол	K2000	D511	3	Sets the PV change rate limit to 2000.	
25	SM402			-[PIDINIT	D500	3	Sets the PID control da D500 to D511.	ta that are set in
28	0A0X		-Емол	к0	U0A\ GO	ŀ		
				-[SET	YOA9	3	Sets the Q62DA to o	utput enable.
34		хоа9 Y0а9 		[rst	YOA9	3		
38	SM402		-[mov	КО	D600	3	Sets the initial processing flag to 0.	
41	X3		-[BINP	K4X30	D610	3	Inputs the SV externally.	I/O data setting
			-[MOVP	D610	D200	ŀ	Saves the SV for manua mode change processir	
47	×0 			-[SET	MO	3	PID operation start com	nmand
49	X80 ──	MO 	-Емол	U8\ G11	D611	ŀ	Sets the PV from the Q data area.	64AD to the I/O
55	×6 −−1	MO 	-[MOVP	K1	D615	3	Sets the manual mode.	
				[RST	M44	ŀ	Resets the devices	
				[RST	M41	3	used for manual to automatic mode change processing.	
ļ	MO	Ve V4		-[rst	C1	ŀ	J	Processing in manual mode
65	MO 		-[BINP	K4X20	D50	3	Sets the MV	
		[>= K2000 D50]	-[MOVP	D50	D614]	externally.	J



9.3 PID Control Program Examples (QnACPU only)

This section describes examples of sequence programs that execute PID control.

System configuration for program examples

The following illustrates the system configuration for the program examples.

Module	I/O number
A68AD	X/Y80 to X/Y9F
A62DA	X/YA0 to X/YBF
AD57	X/YC0 to X/YFF

Program example for automatic mode PID control

This section gives a program example in which PID operation is performed using the digital values imported from the A68AD as PV and the MV obtained as a result of PID operation are output from the A62DA to control external devices.

[PROGRAMMING CONDITIONS]

· PID operation is executed for 2 loops.

• The sampling cycle is 1 second.

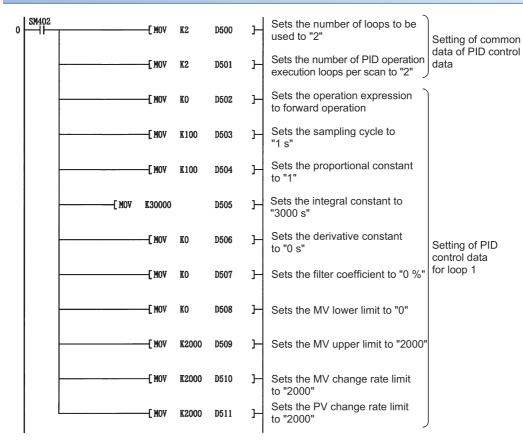
• The PID control data is set in the following devices: (I Page 36 PID Control Data)

PID control data	Device name				
Common data	D500 to D501				
Loop 1 data	D502 to D511				
Loop 2 data	D512 to D521				

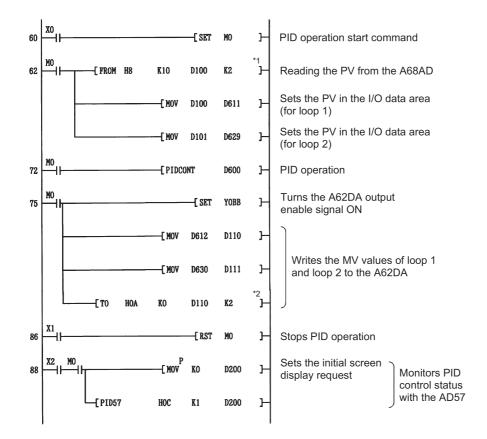
• The I/O data is set in the following devices: (I Page 51 I/O Data)

I/O data	Device name			
Common data	D600 to D609			
Loop 1 data	D610 to D627			
Loop 2 data	D628 to D645			

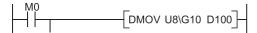
• The following SV are set for loop 1 and loop 2 using a sequence program:


Loop	SV
Loop 1	600
Loop 2	1000

• The following devices are used for PID control start/stop commands and the monitoring command with AD57.


Command	Device name
PID control start command	X0
PID control stop command	X1
Monitoring command with AD57	X2

• The digital values of the A68AD and A62DA are set within the range 0 to 2000.


[PROGRAM EXAMPLE]


25	SM402		[Mov	K1	D512	Ъ	Sets the operation expression for reverse operation	
			[Mov	K100	D513	Ъ	Sets the sampling cycle to "1 s"	
			[Mov	K100	D514	н	Sets the proportional constant to "1"	
		[Mov	K3000 0		D515	Н	Sets the integral constant to "3000 s"	
			—[Mov	KO	D516	Н	Sets the derivative constant to "0 s"	Setting of PID
			—[MOV	KO	D517	Ъ	Sets the filter coefficient to "0 %"	control data for loop 2
			[Mov	KO	D518	н	Sets the MV lower limit to "0"	
		· · · · · · · · · · · · · · · · · · ·	[MOV	K2000	D519	н	Sets the MV upper limit to "2000"	
			-E MOV	K2000	D520	н	Sets the MV change rate limit to "2000"	
			[MOV	K2000	D521	н	Sets the PV change rate limit to "2000"	
46	SM402		[PIDIN	IT	D500	Ъ	Sets the PID control data that are set in D500 to D521	
49	SM402		[Mov	KO	D600	н	Sets the initial processing flag to "0"	Setting of common data of I/O data
			[MOV	K600	D610	н	Sets the SV to "600"	Setting of I/O
			—[MOV	KO	D615	Ъ	Sets the automatic mode	data for loop 1
			[MOV	K1000	D628	н	Sets the SV to "1000"	Setting of I/O
			[MOV	KO	D633	Ъ	Sets the automatic mode	data for loop 2

*1 It is also possible to create a program by using special function module devices. In this case the format in the ladder is as follows:

*2 It is also possible to create a program by using special function module devices. In this case the format in the ladder is as follows:

Program example for changing the PID control mode between automatic and manual

An example program for switching between automatic and manual modes while executing PID operation is described below.

[PROGRAMMING CONDITIONS]

• PID operation is executed for 1 loop.

• The sampling cycle is 1 second.

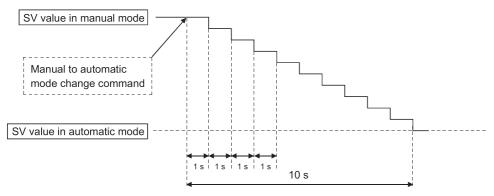
· The PID control data is set in the following devices:

PID control data	Device name
Common data	D500 to D501
Loop 1 data	D502 to D511

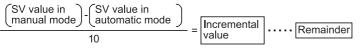
· The I/O data is set in the following devices:

I/O data	Device name
Common data	D600 to D609
Loop 1 data	D610 to D627

• The SV and MV in manual mode are set with external digital switches as follows:

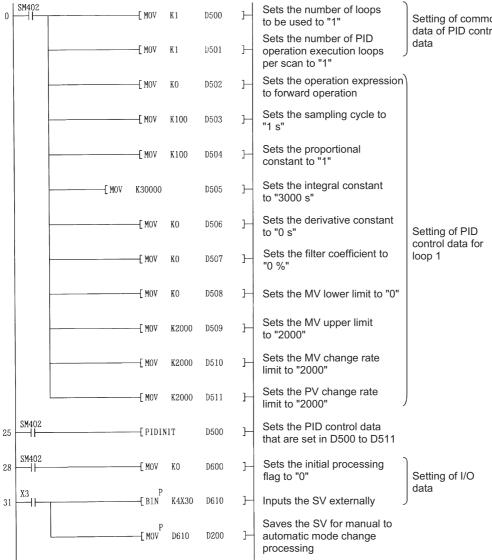

Item	Device name				
SV	X30 to X3F				
MV (manual control mode)	X20 to X2F				

• The following devices are used to start and stop PID control and the automatic/manual changeover command:

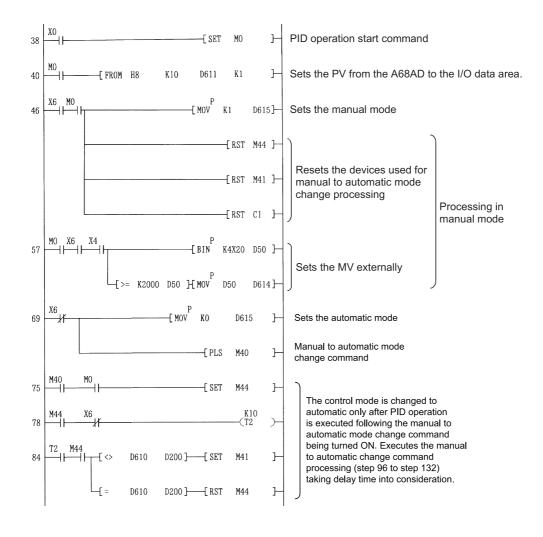

Command	Device name				
PID control start command	X0				
PID control stop command	X1				
Monitoring command with AD57	X2				
SV setting command	X3				
MV setting command in manual mode	X4				
Automatic/manual mode changeover command	X6 (OFF: Automatic mode, ON: Manual mode)				

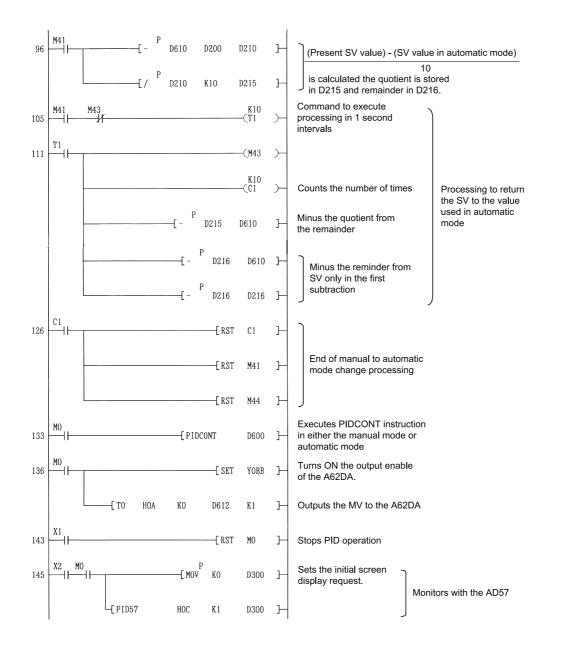
• The digital values of the A68AD and A62DA are set within the range 0 to 2000.

• The PID bumpless processing flag, SM774, is set to OFF. In the manual mode, the SV is automatically rewritten to the PV when PID operation is performed. Therefore, when the manual mode is returned to the automatic mode, the SV must be rewritten to the one used in the automatic mode before switching to the manual mode. The SV is rewritten step-by-step 10 times as illustrated below:^{*1}



*1 The SV is rewritten using the operation method illustrated below:




The incremental value obtained with the formula above is added to SV every second. The remainder is added in the first addition operation.

[PROGRAM EXAMPLE]

Setting of common data of PID control

APPENDICES

Appendix 1 Processing Time List

Processing times for incomplete derivative PID control instructions

■Basic model QCPU, High Performance model QCPU, and Redundant CPU

Instruction	Conditions		Processing T	Processing Time (µs)							
Name			Q00JCPU	Q00CPU	Q01CPU	Q02CPU	QnHCPU	QnPRHCPU			
S.PIDINIT	1 loop		115.0	97.0	88.5	64.5	28.0	28.0			
	8 loops 32 loops		250.0	210.0	190.0	—	-	—			
			-	—	—	410.0	180.0	180.0			
S.PIDCONT	1 loop	First	395.0	335.0	300.0	215.0	92.0	92.0			
		Others	350.0	300.0	270.0	190.0	81.5	81.5			
	8 loop	First	2250.0	1850.0	1700.0	—	—	—			
		Others	1950.0	1650.0	1500.0	—	-	—			
	32 loops	First	—	—	—	4550.0	1950.0	1950.0			
		Others —		—	—	4450.0	1850.0	1850.0			
S.PIDSTOP S.PIDRUN	1 loop		79.5	66.0	61.0	25.0	11.0	11.0			
S.PIDPRMW	1 loop		120.0	99.5	89.5	60.0	26.0	26.0			

■Universal model QCPU (except High-speed Universal model QCPU and Universal model Process CPU)

Instruction	Condition	Conditions		Processing Time (μs)								
Name			Q00UC	Q00UJCPU, Q00UCPU, Q01UCPU		Q02UCPU		Q03UDCPU, Q03UDECPU		Q04UDHCPU, Q06UDHCPU, Q10UDHCPU, Q13UDHCPU, Q20UDHCPU, Q26UDHCPU, Q04UDEHCPU, Q06UDEHCPU, Q10UDEHCPU, Q13UDEHCPU, Q20UDEHCPU, Q26UDEHCPU, Q50UDEHCPU, Q100UDEHCPU		
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.		
S.PIDINIT	1 loop		17.5	39.9	14.2	48.2	14.2	22	11.4	18.8		
	8 loops		—	-	—	—	—	—	-	-		
	32 loops		295	376	230.1	298	231	261	164	183		
S.PIDCONT	1 loop	First	123		114	131	50.5	52.5	46.8	47.5		
		Others	90.4	90.4		111	39.5	47.2	35.8	42.1		
	8 loop	First	—		—	_			-	·		
		Others	—		—		—		-			
	32 loops	First	1121		1082	1115	1036	1041	927	931		
		Others	1046		852	883	820	842	728	744		
S.PIDSTOP	1 loop		7.3	7.3 14.2		17.4	5.5	7.5	4.9	6.9		
S.PIDRUN	1 loop		5.5	11.0	4.9	10.6	4.8	6.1	4.3	5.6		
S.PIDPRMW	1 loop		18.7	62.4	13.3	33	13.0	16.7	10.7	14.5		

■High-speed Universal model QCPU and Universal model Process CPU

Instruction	Conditions		Processing	Processing Time (μs)							
Name			Q03UDVCP	U	Q04UDVC	PU, Q04UDPVCPU	Q06UDVCPU, Q06UDPVCPU, Q13UDVCPU, Q13UDPVCPU, Q26UDVCPU, Q26UDPVCPU				
			Min.	Max.	Min.	Max.	Min.	Max.			
S.PIDINIT	1 loop		4.1	15.2	4.1	15.2	4.1	15.2			
	8 loops		-	—	—	-	-	-			
	32 loops		54.0	59.8	54.0	59.8	54.0	59.8			
S.PIDCONT	1 loop	PIDCONT 1 loop	First	18.5	28.8	18.5	28.8	18.5	28.8		
		Others	16.5	28.3	16.5	28.3	16.5	28.3			
	8 loops	First	-	—		·	—				
		Others	-	-		—		—			
	32 loops	First	207.9	215.6	207.9	215.6	207.9	215.6			
		Others	173.2	184.8	173.2	184.8	173.2	184.8			
S.PIDSTOP	1 loop		2.4	9.2	2.4	9.2	2.4	9.2			
S.PIDRUN	1 loop		2.2	8.8	2.2	8.8	2.2	8.8			
S.PIDPRMW	1 loop		4.5	16.0	4.5	16.0	4.5	16.0			

■LCPU

Instruction	Condition	IS	Processing ⁻	Processing Time (μs)							
Name			L02SCPU, LO)2SCPU-P	L02CPU, L	02CPU-P		.06CPU-P, L26CPU, , L26CPU-BT, BT			
			Min.	Max.	Min.	Max.	Min.	Max.			
S.PIDINIT	S.PIDINIT 1 loop		17.5	39.9	14.0	27.3	11.4	18.8			
	8 loops		—	-	—	—	—	—			
	32 loops		295.0	376.0	244.3	277	164	183			
S.PIDCONT	1 loop	First	123.0	123.0		66.0	46.8	47.5			
		Others	90.4	90.4		55.5	35.8	42.1			
	8 loops	First	—	_		-		—			
		Others	—	—		-					
	32 loops	First	1121.0		1064.2	1069.5	927	931			
		Others	1046.0		863.2	889.8	728	744			
S.PIDSTOP	1 loop	1 loop		14.2	6.9	10.6	4.9	6.9			
S.PIDRUN	1 loop		5.5	11.0	6.2	15.2	4.3	5.6			
S.PIDPRMW	1 loop		18.7	62.4	14.7	28.9	10.7	14.5			

Processing times for complete derivative PID control instructions

Instruction	Conditio	ons	Processing Time (µs)								
Name			Q2ASCPU, Q2ACPU(S1)	Q3ACPU	Q2ASHCPU (S1), Q4ACPU, A4ARCPU	Q00J CPU	Q00CPU	Q01CPU	Q02CPU	QnHCPU	QnPRH CPU
PIDINIT	1 loop		61	46	23	66.0	56.0	50.5	26.0	11.2	11.2
	8 loops		-	—	—	170.0	145.0	130.0	—	—	—
	32 loops		407	306	153	—	—	—	174.0	74.9	74.9
PIDCONT	1 loop	First	211	159	80	325.0	275.0	245.0	86.6	37.3	37.3
		Others	181	136	68	285.0	250.0	225.0	74.3	32.0	32.0
	8 loops	First	—	—	—	2000.0	1700.0	1500.0	—	—	—
		Others	—	—	—	1700.0	1450.0	1300.0	—	—	—
	32 loops	First	5086	3824	1912	—	—	—	2102.5	904.9	904.9
		Others	4894	3680	1840	—	—	—	2036.9	876.7	876.7
PID57	1 loop	First	9629	7240	3620	—	—	—	—	—	—
		Others	606	456	228						
	8 loops	First	9669	7270	3635						
		Others	3719	2796	1398						
PIDSTOP PIDRUN	1 loop		11.2	8.4	4.2	22.0	18.5	17.0	4.5	1.9	1.9
PIDPRMW	1 loop		36	26	13	53.0	45.0	41.0	14.6	6.3	6.3

■Basic model QCPU, High Performance model QCPU, and Redundant CPU

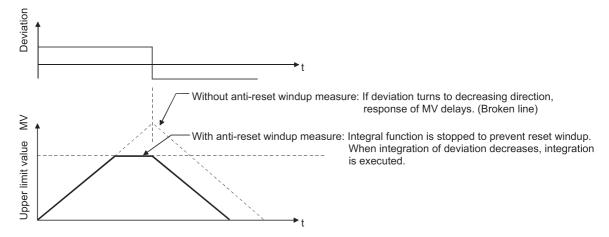
■Universal model QCPU (except High-speed Universal model QCPU and Universal model Process CPU)

Instruction	Conditions		Process	Processing Time (µs)								
Name			Q00UJCPU, Q00UCPU, Q01UCPU		Q02UCPU		Q03UDCPU, Q03UDECPU		Q04UDHCPU, Q06UDHCPU, Q10UDHCPU, Q13UDHCPU, Q20UDHCPU, Q26UDHCPU, Q04UDEHCPU, Q06UDEHCPU, Q10UDEHCPU, Q13UDEHCPU, Q20UDEHCPU, Q26UDEHCPU, Q50UDEHCPU, Q100UDEHCPU			
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.		
PIDINIT	1 loop		10.3	60.7	8.2	27.7	8.2	12.4	6.3	10.9		
	8 loops		-	—			-	—	-	-		
	32 loops		162	227	129	159	129	133	98.7	122.6		
PIDCONT	1 loop First		111		101	102	40.6	41.5	36.8	·		
		Others	95.5	95.5		74.4	33.6	38.5	35.8	35.8		
	8 loop	First	-				-					
		Others	-		-		-		-			
	32 loops	First	909		931	939	862	872	776	785		
		Others	914		764	788	736	757	622	645		
PIDSTOP	1 loop		3.3	33.4	1.8	6.7	1.8	3.4	1.3	2.9		
PIDRUN	1 loop		1	4	1.7	6.7	1.7	3.2	1.5	2.7		
PIDPRMW	1 loop		9.4	23	6.9	17.6	6.9	10.3	5.9	8.9		

■High-speed Universal model QCPU and Universal model Process CPU

Instruction	Conditions		Processing Time (µs)						
Name			Q03UDVCPU		Q04UDVCPU, Q04UDPVCPU		Q06UDVCPU, Q06UDPVCPU, Q13UDVCPU, Q13UDPVCPU, Q26UDVCPU, Q26UDPVCPU		
			Min.	Max.	Min.	Max.	Min.	Max.	
PIDINIT	1 loop		2.7	9.3	2.7	9.3	2.7	9.3	
	8 loops		-	—	—	-	—	—	
	32 loops		35.6	39.9	35.6	39.9	35.6	39.9	
PIDCONT	1 loop	First	14.3	22.7	14.3	22.7	14.3	22.7	
		Others	11.9	21.3	11.9	21.3	11.9	21.3	
	8 loops	First	-		—			-	
		Others	-		—	-		—	
	32 loops	First	196.0	199.5	196.0	199.5	196.0	199.5	
		Others	160.8	167.5	160.8	167.5	160.8	167.5	
PIDSTOP	1 loop	•	1.3	2.9	1.3	2.9	1.3	2.9	
PIDRUN	1 loop		1.3	3.0	1.3	3.0	1.3	3.0	
PIDPRMW	1 loop		2.8	3.7	2.8	3.7	2.8	3.7	

■LCPU


Instruction	Conditions		Processin	Processing Time (μs)						
Name			L02SCPU, L02SCPU-P		L02CPU, L02CPU-P		L06CPU, L06CPU-P, L26CPU, L26CPU-P, L26CPU-BT, L26CPU-PBT			
			Min.	Max.	Min.	Max.	Min.	Max.		
PIDINIT	1 loop		10.3	60.7	8.6	14.6	6.3	10.9		
	8 loops		—	—	-	—	—	—		
	32 loops		162.0	227.0	131.2	136.7	98.7	122.6		
PIDCONT	1 loop	First	110.0		51.5	51.8	36.8	36.8		
		Others	95.5		50.0	50.4	35.8			
	8 loops	First	-		-		-			
		Others	_		-	_		-		
	32 loops	First	909.0		869.5	886.9	776.0	785.0		
		Others	914.0		746.2	750.3	622.0	645.0		
PIDSTOP	1 loop		3.3	33.4	2.2	4.0	1.3	2.9		
PIDRUN	1 loop		1.0	4.0	2.2	4.2	1.5	2.7		
PIDPRMW	1 loop		9.4	23.0	8.0	12.0	5.9	8.9		

Appendix 2 Anti-Reset Windup Measure

A reset windup is a problem that an integral element keeps adding a deviation beyond a saturation limit. (It is also referred to as an integrator windup.)

When a reset windup occurs, integral operation must be stopped to enable immediate response to the inversion of the deviation.

Since the measure for the reset windup is taken in PID operation instructions (PIDCONT and S.PIDCONT) of the QCPU, LCPU, and QnACPU, integral operation need not be stopped.

INDEX

Α

_		
	About the differences between complete derivative and incomplete derivative	30 100
В		
	Bumpless changeover function	31
D		
	Derivative operation (D operation)	29
F		
	Forward operation	26
I		
	I/O Data	
	I/O data allocations	
Μ		
	MV upper/lower limit control function	31
0		
	Operation method	26
	executed	11
	Outline of PID control	
Ρ		
	PID control data allocations	
	PID control instruction list	
	PID operation	
	PID operation block diagram and operation expressions	20
	Process value derivative type operation	
	Processing time list	
	Proportional operation (P operation)	21
R		
	Reverse operation	26
s		
	Sampling cycle	50
	Settings of SV, PV, and MV used in the PID control instructions	12

V

INSTRUCTION INDEX

Ρ

PID57
PID57P
PIDCONT
PIDCONTP
PIDINIT
PIDINITP
PIDPRMW
PIDPRMWP
PIDRUN
PIDRUNP
PIDSTOP
PIDSTOPP

S

S.PIDCONT
S.PIDINIT
S.PIDPRMW 64
S.PIDRUN
S.PIDSTOP
SP.PIDCONT
SP.PIDINIT
SP.PIDPRMW 64
SP.PIDRUN
SP.PIDSTOP 63

REVISIONS

*The manual number is given on the bottom left of the back cover.

Revision date	*Manual number	Description
December 1999 : June 2013	SH(NA)-080040-A : SH(NA)-080040-Q	Due to the transition to the e-Manual, the details of revision have been deleted.
August 2015	SH(NA)-080040-R	Complete revision (layout change)
September 2018	SH(NA)-080040-S	Descriptions regarding the QnUDPVCPU is added.

Japanese manual number: SH-080022-S

This manual confers no industrial property rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

© 1999 MITSUBISHI ELECTRIC CORPORATION

WARRANTY

Please confirm the following product warranty details before using this product.

1. Gratis Warranty Term and Gratis Warranty Range

If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service Company.

However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing on-site that involves replacement of the failed module.

[Gratis Warranty Term]

The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated place. Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair parts shall not exceed the gratis warranty term before repairs.

[Gratis Warranty Range]

- (1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the product.
- (2) Even within the gratis warranty term, repairs shall be charged for in the following cases.
 - 1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused by the user's hardware or software design.
 - 2. Failure caused by unapproved modifications, etc., to the product by the user.
 - 3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by industry standards, had been provided.
 - 4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the instruction manual had been correctly serviced or replaced.
 - 5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force majeure such as earthquakes, lightning, wind and water damage.
 - 6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
 - 7. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.

2. Onerous repair term after discontinuation of production

- (1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued. Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.
- (2) Product supply (including repair parts) is not available after production is discontinued.

3. Overseas service

Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA Center may differ.

4. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation of damages caused by any cause found not to be the responsibility of Mitsubishi, loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products, special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi products, replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

5. Changes in product specifications

The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

 SH(NA)-080040-S(1809)MEE

 MODEL:
 QCPU(Q)-P(PI)-E

 MODEL CODE:
 13JF59

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN NAGOYA WORKS : 1-14 , YADA-MINAMI 5-CHOME , HIGASHI-KU, NAGOYA , JAPAN

When exported from Japan, this manual does not require application to the Ministry of Economy, Trade and Industry for service transaction permission.

Specifications subject to change without notice.